Phần III. Trắc nghiệm trả lời ngắn
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình bên dưới, với \(a\), \(b\), \(c \in \mathbb{Z}\). Tính giá trị của biểu thức \(T = a + 2b + 3c\).

Phần III. Trắc nghiệm trả lời ngắn
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình bên dưới, với \(a\), \(b\), \(c \in \mathbb{Z}\). Tính giá trị của biểu thức \(T = a + 2b + 3c\).
Quảng cáo
Trả lời:

Từ đồ thị hàm số, ta suy ra
+) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\), tiệm cận ngang là đường thẳng\(y = - 1\).
+) Đồ thị hàm số đi qua các điểm \(A\left( {2;0} \right)\), \(B\left( {0; - 2} \right)\).
Từ biểu thức hàm số \(y = \frac{{ax + b}}{{x + c}}\) (vì đồ thị hàm số là đồ thị hàm nhất biến nên \(ac - b \ne 0\)), ta suy ra
+) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - c\), tiệm cận ngang là đường thẳng \(y = a\).
+) Đồ thị hàm số đi qua \(A\left( { - \frac{b}{a};0} \right)\), \(B\left( {0;\frac{b}{c}} \right)\).
Đối chiếu lại, ta suy ra \(c = - 1\), \(a = - 1\), \(b = 2\).
Vậy \(T = a + 2b + 3c = \left( { - 1} \right) + 2.2 + 3\left( { - 1} \right) = 0\).
Trả lời: 0.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị hàm số đã cho ta có
Đồ thị hàm số có 1 đường tiệm cận đứng \(x = {x_0} < 0\).
Suy ra \( - d < 0 \Rightarrow d > 0\).
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Nên \(\frac{c}{d} < 0 \Rightarrow c < 0\).
Dựa vào hình dạng đồ thị dễ thấy hàm số đã cho có 2 cực trị và \(a < 0\).
Đồ thị hàm số có đường thẳng đi qua 2 điểm cực trị có dạng \(y = \frac{{2ax + b}}{d}\).
Mà đường thắng cắt trục tung tại điểm có tung độ âm nên \(\frac{b}{d} < 0 \Rightarrow b < 0\).
Vậy có 1 số dương trong các số \(a;b;c;d\).
Trả lời: 1.
Lời giải
Ta có \(y = ax + b\) là đường tiệm cận xiên của đồ thị hàm số.
Từ đồ thị ta suy ra được \(y = x + 1\) là tiệm cận xiên nên \(a = 1,b = 1\)
\(x = 1\) là tiệm cận đứng của đồ thị hàm số nên \(c = - 1\)
Vậy \(a + b + c = 1\).
Trả lời: 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.