Câu hỏi:

11/09/2025 25 Lưu

Đồ thị trong hình bên dưới là của hàm số \(y = \frac{{ax + b}}{{x + c}}\) (với \(a,b,c \in \mathbb{R}\)).

nnnnnnnn (ảnh 1)

Tính \(a + b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đồ thị hàm số \(y = \frac{{ax + b}}{{x + c}}\)có đường tiệm cận ngang \(y = a\), đường tiệm cận đứng \(x = - c\) và cắt \(Oy\) tại điểm \(\left( {0;\frac{b}{c}} \right)\).

Từ đồ thị hàm số ta có đường tiệm cận ngang \(y = - 1\), đường tiệm cận đứng \(x = 1\) và cắt \(Oy\) tại điểm \(\left( {0; - 2} \right)\).

Từ đó suy ra: a=1c=1bc=2a=1c=1b=2ca=1c=1b=2

Trả lời: 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị hàm số đã cho ta có

Đồ thị hàm số có 1 đường tiệm cận đứng \(x = {x_0} < 0\).

Suy ra \( - d < 0 \Rightarrow d > 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Nên \(\frac{c}{d} < 0 \Rightarrow c < 0\).

Dựa vào hình dạng đồ thị dễ thấy hàm số đã cho có 2 cực trị và \(a < 0\).

Đồ thị hàm số có đường thẳng đi qua 2 điểm cực trị có dạng \(y = \frac{{2ax + b}}{d}\).

Mà đường thắng cắt trục tung tại điểm có tung độ âm nên \(\frac{b}{d} < 0 \Rightarrow b < 0\).

Vậy có 1 số dương trong các số \(a;b;c;d\).

Trả lời: 1.

Lời giải

Ta có \(y = ax + b\) là đường tiệm cận xiên của đồ thị hàm số.

Từ đồ thị ta suy ra được \(y = x + 1\) là tiệm cận xiên nên \(a = 1,b = 1\)

\(x = 1\) là tiệm cận đứng của đồ thị hàm số nên \(c = - 1\)

Vậy \(a + b + c = 1\).

Trả lời: 1.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP