Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy ABCD, cạnh đáy bằng a, cạnh bên bằng 2a.
a) Góc giữa hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) là 0°.
b) Góc giữa hai vectơ \(\overrightarrow {BD} \) và \(\overrightarrow {BO} \) là 180°.
c) Cosin của góc giữa hai vectơ \(\overrightarrow {BA} \) và \(\overrightarrow {CS} \) bằng \(\frac{1}{4}\).
d) Góc giữa hai vectơ \(\overrightarrow {AO} \) và \(\overrightarrow {SD} \) bằng 60°.
Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy ABCD, cạnh đáy bằng a, cạnh bên bằng 2a.
a) Góc giữa hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) là 0°.
b) Góc giữa hai vectơ \(\overrightarrow {BD} \) và \(\overrightarrow {BO} \) là 180°.
c) Cosin của góc giữa hai vectơ \(\overrightarrow {BA} \) và \(\overrightarrow {CS} \) bằng \(\frac{1}{4}\).
d) Góc giữa hai vectơ \(\overrightarrow {AO} \) và \(\overrightarrow {SD} \) bằng 60°.
Quảng cáo
Trả lời:

a) Hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.
b) Hai vectơ \(\overrightarrow {BD} \) và \(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).
c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).
Áp dụng định lí côsin cho tam giác SCD có:
\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).
d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \) và \(\overrightarrow {SD} \) bằng 90°.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \[ABCD\] là hình vuông nên \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \) ( qui tắc hình bình hành) suy ra\(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {AD} \).
b) Do \[G\]là trọng tâm tam giác \[SBD\] nên\(\overrightarrow {GS} + \overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow 0 \Rightarrow \left( {\overrightarrow {GA} + \overrightarrow {AS} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AD} } \right) = \overrightarrow 0 \)\( \Rightarrow \overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} .\)
c) Ta có \[ABCD\] là hình vuông nên nên \(AC \bot BD \Rightarrow \overrightarrow {AC} .\overrightarrow {BD} = 0 \Rightarrow 2\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0 \Rightarrow \overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0\).
d) Do \[G\]là trọng tâm tam giác \[SBD\] nên \(\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} \)
\({\left( {3\overrightarrow {AG} } \right)^2} = {\left( {\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} } \right)^2} \Rightarrow 9A{G^2} = A{S^2} + A{B^2} + A{D^2} + 2\overrightarrow {AS} \overrightarrow {AB} + 2\overrightarrow {AS} \overrightarrow {AD} + 2\overrightarrow {AD} \overrightarrow {AB} \;\left( 1 \right)\).
Vì \(SA\)vuông góc với mặt phẳng \((ABCD)\) nên\(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AD\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {AD} = 0\\\overrightarrow {SA} .\overrightarrow {AB} = 0\end{array} \right.\;\left( 2 \right)\).
\[ABCD\] là hình vuông nên \(\overrightarrow {AB} .\overrightarrow {AD} = 0\left( 3 \right)\) .
Từ \[\left( 1 \right);\left( 2 \right);\left( 3 \right)\] ta được \(9A{G^2} = A{S^2} + A{B^2} + A{D^2}.\)
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Lời giải
Ta có: \(\overrightarrow {IJ} \, = \,\,\overrightarrow {IA} + \,\overrightarrow {AJ} \)\( = \, - \frac{1}{2}\overrightarrow {AB} \, + \frac{1}{2}\left( {\overrightarrow {AC} \, + \,\overrightarrow {AD} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {BC} + \,\overrightarrow {AD} } \right)\)
\( = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BD} + \overrightarrow {CD} + \overrightarrow {DC} + \overrightarrow {BC} } \right)\) \( = \,\frac{1}{2}\left( {\overrightarrow {DC} + \overrightarrow {BD} + \overrightarrow {AD} } \right)\).
Vậy đẳng thức sai là \[\overrightarrow {IJ} \, = \,\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {CD} } \right)\]. Chọn D.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.