Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

Quảng cáo
Trả lời:
Đường cong trong hình vẽ là đồ thị của hàm số \(y = \sin x\). Chọn B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(0 \le {\cos ^2}x \le 1\)\( \Leftrightarrow - 4 \le - 4{\cos ^2}x \le 0\)\( \Leftrightarrow - 2 + \pi \le - 4{\cos ^2}x + 2 + \pi \le 2 + \pi \).
Do đó giá trị lớn nhất của hàm số là \(2 + \pi \approx 5,14\).
Trả lời: 5,14.
Câu 2
Lời giải
Hàm số \(y = \cot \left( {2x - \frac{\pi }{3}} \right)\) xác định khi \(\sin \left( {2x - \frac{\pi }{3}} \right) \ne 0\)\( \Leftrightarrow 2x - \frac{\pi }{3} \ne k\pi \)\( \Leftrightarrow x \ne \frac{\pi }{6} + k\frac{\pi }{2},k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\frac{\pi }{2}\,|k \in \mathbb{Z}} \right\}\). Chọn D.
Câu 3
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = \cos x\).
a) Hàm số đã cho có tập xác định là \(D = \left[ { - 1;1} \right]\).
b) Đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
c) Đồ thị hàm số đã cho nhận trục tung làm trục đối xứng.
d) Hàm số đã cho nghịch biến trên khoảng \(\left( {0;\frac{{3\pi }}{2}} \right)\).
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = \cos x\).
a) Hàm số đã cho có tập xác định là \(D = \left[ { - 1;1} \right]\).
b) Đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
c) Đồ thị hàm số đã cho nhận trục tung làm trục đối xứng.
d) Hàm số đã cho nghịch biến trên khoảng \(\left( {0;\frac{{3\pi }}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.