Câu hỏi:

12/09/2025 79 Lưu

Số giờ có ánh sáng của thành phố T ở vĩ độ 40° bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với \(t \in \mathbb{Z}\)\(0 < t \le 365\). Bạn An muốn đi tham quan thành phố T nhưng lại không thích ánh sáng mặt trời, vậy bạn An nên chọn đi vào ngày nào trong năm để thành phố T có ít giờ có ánh sáng mặt trời nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] \ge - 1\) \( \Rightarrow 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 \ge 9\)\( \Rightarrow d\left( t \right) \ge 9\).

Vậy thành phố T có ít giờ có ánh sáng mặt trời nhất khi vào chỉ khi \(\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\)

\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = - \frac{\pi }{2} + k2\pi \)\( \Leftrightarrow t - 80 = 182\left( { - \frac{1}{2} + k2} \right)\)\( \Leftrightarrow t = 364k - 11,k \in \mathbb{Z}\).

Mặt khác \(0 \le 364k - 11 \le 365\)\( \Leftrightarrow \frac{{11}}{{364}} \le k \le \frac{{376}}{{364}}\)\( \Leftrightarrow k = 1\) (do \(k \in \mathbb{Z}\)).

Suy ra \(t = 364 - 11 = 353\).

Vậy thành phố T có ít giờ ánh sáng Mặt Trời nhất là 9 giờ khi t = 353, tức là vào ngày thứ 353 trong năm.

Trả lời: 353.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(0 \le {\cos ^2}x \le 1\)\( \Leftrightarrow - 4 \le - 4{\cos ^2}x \le 0\)\( \Leftrightarrow - 2 + \pi \le - 4{\cos ^2}x + 2 + \pi \le 2 + \pi \).

Do đó giá trị lớn nhất của hàm số là \(2 + \pi \approx 5,14\).

Trả lời: 5,14.

Câu 2

A. \[y = \tan x\].               
B. \(y = \sin x\).                
C. \[y = \cot x\].            
D. \(y = \cos x\).

Lời giải

Đường cong trong hình vẽ là đồ thị của hàm số \(y = \sin x\). Chọn B.

Câu 3

A. \(\mathbb{R}\backslash \left\{ {\frac{{2\pi }}{3} + k\frac{\pi }{2}\,|k \in \mathbb{Z}} \right\}\).                                        
B. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\pi \,|k \in \mathbb{Z}} \right\}\).                                                         
C. \(\mathbb{R}\backslash \left\{ {\frac{{2\pi }}{3} + k\pi \,|k \in \mathbb{Z}} \right\}\).                                              
D. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\frac{\pi }{2}\,|k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP