Câu hỏi:

13/09/2025 35 Lưu

Cho tứ diện \(ABCD\), gọi \({G_1},{G_2}\) lần lượt là trọng tâm tam giác \(BCD\) và \(ACD.\) Mệnh đề nào sau đây sai?

A. \({G_1}{G_2}\,{\rm{//}}\,\left( {ABD} \right)\).
B. Ba đường thẳng \(B{G_1},A{G_2}\) và \(CD\) đồng quy.
C. \({G_1}{G_2}\,{\rm{//}}\,\left( {ABC} \right)\).
D. \({G_1}{G_2} = \frac{2}{3}AB\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mệnh đề nào sau đây sai? (ảnh 1)

Gọi \(M\) là trung điểm của \(CD\).

Xét \(\Delta ABM\) ta có: \(\frac{{M{G_1}}}{{MB}} = \frac{{M{G_2}}}{{MA}} = \frac{1}{3} \Rightarrow \left\{ \begin{array}{l}{G_1}{G_2}\,{\rm{//}}\,AB\\{G_1}{G_2} = \frac{1}{3}AB\end{array} \right.\) \( \Rightarrow \) D sai.

Vì \({G_1}{G_2}\,{\rm{//}}\,AB \Rightarrow {G_1}{G_2}\,{\rm{//}}\,\left( {ABD} \right)\) \( \Rightarrow \) A đúng.

Vì \({G_1}{G_2}\,{\rm{//}}\,AB \Rightarrow {G_1}{G_2}\,{\rm{//}}\,\left( {ABC} \right)\) \( \Rightarrow \) C đúng.

Ba đường \(B{G_1},A{G_2},CD\), đồng quy tại \(M\) \( \Rightarrow \) B đúng. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SB.  a) MN // (SAB). (ảnh 1)

a) Ta có M Î SA, N Î SB nên MN Ì (SAB).

b) Ta có M là trung điểm SA, O là trung điểm AB.

Suy ra MO là đường trung bình của DSAC Þ MO // SC.

Mà SC Ì (SBC) Þ MO // (SBC).

c) Ta có N Î SB, O Î BD nên NO Ì (SBD).

d) Ta có M, N lần lượt là trung điểm của SA, SB nên MN // AB

Mà AB // CD nên MN // CD.

Lại có MN Ì (MNO) Þ CD // (MNO).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

Câu 2

A. \(MP\,{\rm{//}}\,\left( {BCD} \right)\).     
B. \(GQ\,{\rm{//}}\,\left( {BCD} \right)\).
C. \(MP \subset \) \(\left( {BCD} \right)\).     
D. \(Q\) thuộc mặt phẳng \(\left( {CDP} \right)\).

Lời giải

CCCCCCCCC (ảnh 1)

Vì \(G\) là trọng tâm tam giác \[ABD\] nên \(\frac{{AG}}{{AM}} = \frac{2}{3}\).

Điểm \(Q \in AB\) sao cho \(AQ = 2QB\) suy ra \(\frac{{AQ}}{{AB}} = \frac{2}{3}\).

Khi đó \(\frac{{AG}}{{AM}} = \frac{{AQ}}{{AB}} = \frac{2}{3}\), theo định lí Thalès đảo ta có \(QC\,{\rm{//}}\,BD\).

Mặt khác \[BD\] nằm trong mặt phẳng \(\left( {BCD} \right)\) suy ra \[GQ\,{\rm{//}}\,\left( {BCD} \right)\]. Chọn B.

Câu 4

A. \(d\,{\rm{//}}\,d'\).                                            
B. \(d\) cắt \(d'\).
C. \(d\) và \(d'\) chéo nhau.                                     
D. \(d \equiv d'\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(a\,{\rm{//}}\,b\)\(b \subset \left( P \right)\).                                                                    
B. \(a\,{\rm{//}}\,b\)\(b\,{\rm{//}}\,\left( P \right)\).
C. \(a \subset \left( Q \right)\)\(b \subset \left( P \right)\).                                                                    
D. \(a\,{\rm{//}}\,b\); \(a \subset \left( Q \right)\)\(b \subset \left( P \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP