Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\], \[I\] là trung điểm cạnh \[SC\].
a) \[IO{\rm{//}}\left( {SAB} \right)\] .
b) \[IO{\rm{ //}}\left( {SAD} \right)\].
c) \[\left( {IBD} \right)\] cắt hình chóp \[S.ABCD\] theo thiết diện là một tứ giác.
d) \[\left( {IBD} \right) \cap \left( {SAC} \right) = IO\] .
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\], \[I\] là trung điểm cạnh \[SC\].
a) \[IO{\rm{//}}\left( {SAB} \right)\] .
b) \[IO{\rm{ //}}\left( {SAD} \right)\].
c) \[\left( {IBD} \right)\] cắt hình chóp \[S.ABCD\] theo thiết diện là một tứ giác.
d) \[\left( {IBD} \right) \cap \left( {SAC} \right) = IO\] .
Quảng cáo
Trả lời:

a) Ta có: \(\left. \begin{array}{l}OI{\rm{//}}SA\\OI \not\subset \left( {SAB} \right)\end{array} \right\} \Rightarrow OI{\rm{//}}\left( {SAB} \right)\).
b) Ta có: \(\left. \begin{array}{l}OI{\rm{//}}SA\\OI \not\subset \left( {SAD} \right)\end{array} \right\} \Rightarrow OI{\rm{//}}\left( {SAD} \right)\).
c) Ta có: \(\left( {IBD} \right)\) cắt hình chóp theo thiết diện là tam giác \(IBD\).
d) Ta có: \[\left( {IBD} \right) \cap \left( {SAC} \right) = IO\]
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có M Î SA, N Î SB nên MN Ì (SAB).
b) Ta có M là trung điểm SA, O là trung điểm AB.
Suy ra MO là đường trung bình của DSAC Þ MO // SC.
Mà SC Ì (SBC) Þ MO // (SBC).
c) Ta có N Î SB, O Î BD nên NO Ì (SBD).
d) Ta có M, N lần lượt là trung điểm của SA, SB nên MN // AB
Mà AB // CD nên MN // CD.
Lại có MN Ì (MNO) Þ CD // (MNO).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Câu 2
Lời giải

Vì \(G\) là trọng tâm tam giác \[ABD\] nên \(\frac{{AG}}{{AM}} = \frac{2}{3}\).
Điểm \(Q \in AB\) sao cho \(AQ = 2QB\) suy ra \(\frac{{AQ}}{{AB}} = \frac{2}{3}\).
Khi đó \(\frac{{AG}}{{AM}} = \frac{{AQ}}{{AB}} = \frac{2}{3}\), theo định lí Thalès đảo ta có \(QC\,{\rm{//}}\,BD\).
Mặt khác \[BD\] nằm trong mặt phẳng \(\left( {BCD} \right)\) suy ra \[GQ\,{\rm{//}}\,\left( {BCD} \right)\]. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.