Câu hỏi:

13/09/2025 64 Lưu

Chứng minh dãy số \(\left( {{u_n}} \right)\), với \({u_n} = \frac{{7n + 5}}{{5n + 7}}\) là một dãy số tăng và bị chặn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Công thức \({u_n}\) được viết lại: \({u_n} = \frac{7}{5} - \frac{{24}}{{5\left( {5n + 7} \right)}}\)

Xét hiệu số: un+1un=752455n+1+7752455n+7

\( = \frac{{24}}{5}\left( {\frac{1}{{5n + 7}} - \frac{1}{{5\left( {n + 1} \right) + 7}}} \right) > 0{\rm{   }}\forall n \ge 1\) \( \Rightarrow {u_{n + 1}} > {u_n}\).

Vậy dãy số \(\left( {{u_n}} \right)\)là dãy số tăng.

Ta có: 0<15n+7112    n1 0>2455n+725 75>752455n+77525

\( \Leftrightarrow 1 \le {u_n} < \frac{7}{5}.\) Suy ra \(\left( {{u_n}} \right)\) là một dãy số bị chặn.

Kết luận \(\left( {{u_n}} \right)\) là một dãy số tăng và bị chặn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SB.  a) MN // (SAB). (ảnh 1)

a) Ta có M Î SA, N Î SB nên MN Ì (SAB).

b) Ta có M là trung điểm SA, O là trung điểm AB.

Suy ra MO là đường trung bình của DSAC Þ MO // SC.

Mà SC Ì (SBC) Þ MO // (SBC).

c) Ta có N Î SB, O Î BD nên NO Ì (SBD).

d) Ta có M, N lần lượt là trung điểm của SA, SB nên MN // AB

Mà AB // CD nên MN // CD.

Lại có MN Ì (MNO) Þ CD // (MNO).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Câu 3

A. \(MP\,{\rm{//}}\,\left( {BCD} \right)\).     
B. \(GQ\,{\rm{//}}\,\left( {BCD} \right)\).
C. \(MP \subset \) \(\left( {BCD} \right)\).     
D. \(Q\) thuộc mặt phẳng \(\left( {CDP} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP