Một đa giác có chu vi là \[158\;{\rm{cm}}\], độ dài các cạnh của nó lập thành một cấp số cộng. Biết cạnh lớn nhất có độ dài là \[44\;{\rm{cm}}\]. Tìm số cạnh của đa giác đó?
Một đa giác có chu vi là \[158\;{\rm{cm}}\], độ dài các cạnh của nó lập thành một cấp số cộng. Biết cạnh lớn nhất có độ dài là \[44\;{\rm{cm}}\]. Tìm số cạnh của đa giác đó?
Quảng cáo
Trả lời:
Giả sử đa giác có \(n\) cạnh (\(n \in \mathbb{N},\,\,n \ge 3\)).
Gọi độ dài các cạnh của đa giác là \({u_1},\,{u_2},\,{u_3},\,...\,,\,{u_n}\) theo thứ tự lập thành cấp số cộng và cạnh lớn nhất có độ dài là 44 cm nên \(0 < {u_1} < {u_2} < \,{u_3} < \,...\, < \,{u_n} = 44\;{\rm{cm}}\).
Vì đa giác có chu vi là \[158\;{\rm{cm}}\] nên \[{S_n} = {u_1} + {u_2} + \,{u_3} + \,...\, + \,{u_n} = \frac{{\left( {{u_1} + {u_n}} \right)n}}{2}\]
hay \[158 = \frac{{\left( {{u_1} + 44} \right)n}}{2}\] suy ra \[n = \frac{{316}}{{{u_1} + 44}}\]
Mà \(n \in \mathbb{N}\) nên \[{u_1} + 44\] là ước nguyên dương của \[316\] hay \[{u_1} + 44 \in \left\{ {2;\,\,4;\,\,79;\,\,158;\,\,316} \right\}\].
|
\[{u_1} + 44\] |
\(2\) |
\(4\) |
\(79\) |
\(158\) |
\(316\) |
|
\[{u_1}\] |
\[{u_1} < 0\] (loại) |
\[{u_1} < 0\](loại) |
\[{u_1} = 35\] |
\[{u_1} = 114\](không thỏa mãn vì \({u_n} = 44\;{\rm{cm}}\)) |
\[{u_1} = 272\](không thỏa mãn vì \({u_n} = 44\;{\rm{cm}}\)) |
Vậy đa giác đã cho có \[n = \frac{{316}}{{79}} = 4\] cạnh.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có M Î SA, N Î SB nên MN Ì (SAB).
b) Ta có M là trung điểm SA, O là trung điểm AB.
Suy ra MO là đường trung bình của DSAC Þ MO // SC.
Mà SC Ì (SBC) Þ MO // (SBC).
c) Ta có N Î SB, O Î BD nên NO Ì (SBD).
d) Ta có M, N lần lượt là trung điểm của SA, SB nên MN // AB
Mà AB // CD nên MN // CD.
Lại có MN Ì (MNO) Þ CD // (MNO).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Câu 2
Lời giải

Vì \(G\) là trọng tâm tam giác \[ABD\] nên \(\frac{{AG}}{{AM}} = \frac{2}{3}\).
Điểm \(Q \in AB\) sao cho \(AQ = 2QB\) suy ra \(\frac{{AQ}}{{AB}} = \frac{2}{3}\).
Khi đó \(\frac{{AG}}{{AM}} = \frac{{AQ}}{{AB}} = \frac{2}{3}\), theo định lí Thalès đảo ta có \(QC\,{\rm{//}}\,BD\).
Mặt khác \[BD\] nằm trong mặt phẳng \(\left( {BCD} \right)\) suy ra \[GQ\,{\rm{//}}\,\left( {BCD} \right)\]. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.