Câu hỏi:

13/09/2025 53 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,N\) lần lượt là trọng tâm của hai tam giác \(\Delta SAB\)\(\Delta SAD\). Gọi \(K\) là trung điểm của \(SD\).

a) Tìm giao tuyến d của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

b) Chứng minh rằng : \(MN//BD\).

c) Tìm giao điểm của đường thẳng \(KB\) với mặt phẳng \(\left( {SAC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

CCCCCC (ảnh 1)

a) \[\left\{ \begin{array}{l}S \in (SAB) \cap (SCD)\\AB//CD\\AB \subset (SAB),CD \subset (SCD)\end{array} \right.\]

\[ \Rightarrow (SAB) \cap (SCD) = d\], d qua S và d // AB, d // CD.

b) Gọi I là trung điểm của SA.

Do M, N lần lượt là trọng tâm các tam giác SAB và SAD nên

\[\frac{{IM}}{{IB}} = \frac{{IN}}{{ID}} = \frac{1}{3}\]\[MN,BD \subset (IBD)\]\[ \Rightarrow MN//BD\].

c) Gọi \[O = AC \cap BD,J = BK \cap SO\]

\[ \Rightarrow \left\{ \begin{array}{l}J \in BK\\J \in SO,SO \subset (SAC)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}J \in BK\\J \in (SAC)\end{array} \right. \Rightarrow J = BK \cap (SAC)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SB.  a) MN // (SAB). (ảnh 1)

a) Ta có M Î SA, N Î SB nên MN Ì (SAB).

b) Ta có M là trung điểm SA, O là trung điểm AB.

Suy ra MO là đường trung bình của DSAC Þ MO // SC.

Mà SC Ì (SBC) Þ MO // (SBC).

c) Ta có N Î SB, O Î BD nên NO Ì (SBD).

d) Ta có M, N lần lượt là trung điểm của SA, SB nên MN // AB

Mà AB // CD nên MN // CD.

Lại có MN Ì (MNO) Þ CD // (MNO).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

Câu 2

A. \(MP\,{\rm{//}}\,\left( {BCD} \right)\).     
B. \(GQ\,{\rm{//}}\,\left( {BCD} \right)\).
C. \(MP \subset \) \(\left( {BCD} \right)\).     
D. \(Q\) thuộc mặt phẳng \(\left( {CDP} \right)\).

Lời giải

CCCCCCCCC (ảnh 1)

Vì \(G\) là trọng tâm tam giác \[ABD\] nên \(\frac{{AG}}{{AM}} = \frac{2}{3}\).

Điểm \(Q \in AB\) sao cho \(AQ = 2QB\) suy ra \(\frac{{AQ}}{{AB}} = \frac{2}{3}\).

Khi đó \(\frac{{AG}}{{AM}} = \frac{{AQ}}{{AB}} = \frac{2}{3}\), theo định lí Thalès đảo ta có \(QC\,{\rm{//}}\,BD\).

Mặt khác \[BD\] nằm trong mặt phẳng \(\left( {BCD} \right)\) suy ra \[GQ\,{\rm{//}}\,\left( {BCD} \right)\]. Chọn B.

Câu 4

A. \(d\,{\rm{//}}\,d'\).                                            
B. \(d\) cắt \(d'\).
C. \(d\) và \(d'\) chéo nhau.                                     
D. \(d \equiv d'\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(a\,{\rm{//}}\,b\)\(b \subset \left( P \right)\).                                                                    
B. \(a\,{\rm{//}}\,b\)\(b\,{\rm{//}}\,\left( P \right)\).
C. \(a \subset \left( Q \right)\)\(b \subset \left( P \right)\).                                                                    
D. \(a\,{\rm{//}}\,b\); \(a \subset \left( Q \right)\)\(b \subset \left( P \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP