Câu hỏi:

14/09/2025 12 Lưu

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Cho hàm số \(y = \cos x\).

a) Hàm số đã cho có tập xác định là \(D = \left[ { - 1;1} \right]\).

b) Đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).

c) Đồ thị hàm số đã cho nhận trục tung làm trục đối xứng.

d) Hàm số đã cho nghịch biến trên khoảng \(\left( {0;\frac{{3\pi }}{2}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Hàm số \(y = \cos x\) có tập xác định \(D = \mathbb{R}\).

b) Thay tọa độ điểm \(A\left( {0;1} \right)\)vào hàm số \(y = \cos x\) thỏa mãn.

c) Hàm số \(y = \cos x\) chẵn nhận trục tung làm trục đối xứng.

d) Hàm số đã cho nghịch biến trên khoảng \(\left( {0;\pi } \right)\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số \(y = \sin x\) có đồ thị như hình

VVVVV (ảnh 1)

a) Hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) và đồng biến trên khoảng \(\left( {\frac{\pi }{2};\pi } \right)\).

b) Trên khoảng \(\left( { - \frac{\pi }{2};\frac{{5\pi }}{2}} \right)\) có 3 giá trị của \(x\) để \(\sin x = 0\).

c) Đường thẳng \(y = - 0,35\) giao với đồ thị hàm số \(y = \sin x\) tại 2 điểm phân biệt trên khoảng \(\left( { - \frac{\pi }{2};\frac{{3\pi }}{2}} \right)\).

d) Hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( {\frac{\pi }{7};\frac{\pi }{5}} \right)\).

Lời giải

a) Hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) và nghịch biến trên khoảng \(\left( {\frac{\pi }{2};\pi } \right)\).

b) Trên khoảng \(\left( { - \frac{\pi }{2};\frac{{5\pi }}{2}} \right)\), đường thẳng \(y = 0\) cắt đồ thị hàm số \(y = \sin x\) tại 3 điểm phân biệt nên có 3 giá trị của \(x\) để \(\sin x = 0\).

c) Trên khoảng \(\left( { - \frac{\pi }{2};\frac{{3\pi }}{2}} \right)\), đường thẳng \(y = - 0,35\) cắt đồ thị hàm số \(y = \sin x\) tại 2 điểm phân biệt.

d) Dựa vào đồ thị hàm số ta có hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( {\frac{\pi }{7};\frac{\pi }{5}} \right)\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Đúng.

Lời giải

\(0 \le {\cos ^2}x \le 1\)\( \Leftrightarrow - 4 \le - 4{\cos ^2}x \le 0\)\( \Leftrightarrow - 2 + \pi \le - 4{\cos ^2}x + 2 + \pi \le 2 + \pi \).

Do đó giá trị lớn nhất của hàm số là \(2 + \pi \approx 5,14\).

Trả lời: 5,14.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP