Câu hỏi:

14/09/2025 400 Lưu

Giải các phương trình sau

a) \(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \sin \left( {\frac{\pi }{6} - x} \right)\);                            

b) \(\cos \left( {2x + 25^\circ } \right) = - \frac{{\sqrt 2 }}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \sin \left( {\frac{\pi }{6} - x} \right) \Rightarrow \left[ {\begin{array}{*{20}{c}}{3x - \frac{{3\pi }}{4} = \frac{\pi }{6} - x + k2\pi }\\{3x - \frac{{3\pi }}{4} = \pi - \left( {\frac{\pi }{6} - x} \right) + k2\pi }\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{11\pi }}{{48}} + \frac{{k\pi }}{2}}\\{x = \frac{{19\pi }}{{24}} + k\pi }\end{array}} \right.,k \in \mathbb{Z}\).

b) \(\cos \left( {2x + 25^\circ } \right) = - \frac{{\sqrt 2 }}{2} \Rightarrow \cos \left( {2x + 25^\circ } \right) = \cos 135^\circ \)

\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{2x + 25^\circ = 135^\circ + k360^\circ }\\{2x + 25^\circ = - 135^\circ + k360^\circ }\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 55^\circ + k180^\circ }\\{x = - 80^\circ + k180^\circ }\end{array}} \right.,k \in \mathbb{Z}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Lời giải

Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\)\({u_n} = 2048\).

\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)

\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)

Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP