Câu hỏi:

14/09/2025 109 Lưu

Tính tổng tất cả các số hạng của một cấp số nhân có số hạng đầu là \(\frac{1}{2}\), số hạng thứ tư là \(32\) và số hạng cuối là \(2048\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\)\({u_n} = 2048\).

\({u_4} = {u_1}.{q^3}\) \( \Rightarrow 32 = \frac{1}{2}.{q^3}\)\( \Rightarrow q = 4\)

\({u_n} = 2048\)\( \Rightarrow {u_1}.\,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\)

Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_5} = 19\\{u_9} = 35\end{array} \right.{\rm{ }}\left( 1 \right)\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\),

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d = 19\\{u_1} + 8d = 35\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\d = 4\end{array} \right.\).

Vậy số hạng đầu tiên \({u_1} = 3\), công sai \(d = 4\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = 3 + 19.4 = 79\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.3 + 19.4} \right) = 820\).

b) \(\left\{ \begin{array}{l}{u_3} + {u_5} = 14\\{s_{12}} = 129\end{array} \right.{\rm{ }}\left( 1 \right)\).

 Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2}\)

Ta có: \(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d + {u_1} + 4d = 14\\6\left( {2{u_1} + 11d} \right) = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 14\\12{u_1} + 66d = 129\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{5}{2}\\d = \frac{3}{2}.\end{array} \right.\)

Vậy số hạng đầu tiên \({u_1} = \frac{5}{2}\), công sai \(d = \frac{3}{2}\).

Số hạng thứ \(20\): \({u_{20}} = {u_1} + 19d = \frac{5}{2} + 19.\frac{3}{2} = 31\).

Tổng của \(20\) số hạng đầu tiên: \({S_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.\frac{5}{2} + 19.\frac{3}{2}} \right) = 335\).

Lời giải

CCCCCC (ảnh 1)

Ta có NP // AB.

Ta có NP Ì (MNP), AB Ì (ABC), (ABC) và (MNP) có điểm M chung nên giao tuyến của (ABC) và (MNP) là đường thẳng MQ // AB (Q Î AC).

Ta có \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 3\).

Trả lời: 3.

Câu 3

A. đường thẳng qua \(S\) và song song với \(AB\).
B. đường thẳng qua \(S\) và song song với \(AD\).
C. đường thẳng qua \(M\) và song song với \(CD\).
D. đường thẳng qua \(M\) và song song với \(AD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP