Trong hình vẽ dưới, phần mặt phẳng không bị gạch sọc (kể cả biên) là miền nghiệm của hệ bất phương trình nào dưới đây?

Trong hình vẽ dưới, phần mặt phẳng không bị gạch sọc (kể cả biên) là miền nghiệm của hệ bất phương trình nào dưới đây?
Quảng cáo
Trả lời:

Ta chọn điểm (−1; 1) thuộc miền nghiệm của hệ bất phương trình thay vào lần lượt các phương trình đường thẳng ta được:
\(\left\{ \begin{array}{l} - 1 - 2.1 = - 3 < 0\\ - 1 + 3.1 + 2 = 4 > 0\end{array} \right.\).
Suy ra hệ bất phương trình là \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \ge - 2\end{array} \right.\). Chọn A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số tấn sản phẩm I sản xuất trong một ngày, \(y\) là số tấn sản phẩm II sản xuất trong một ngày thì ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + y \le 6\\x + y \le 4\end{array} \right.\).
Tổng số tiền lãi thu được là \(L = 2x + 1,6y\) triệu đồng.
Miền nghiệm của hệ bất phương trình trên là phần tô đậm ở hình vẽ
Ta có \(L = 2x + 1,6y\) đạt giá trị lớn nhất chỉ có thể ở các điểm O, A, B, C.
Với O(0; 0) thì L = 0.
Với A(2; 0) thì L = 4.
Với B(1; 3) thì L = 6,8.
Với C(0; 4) thì L = 6,4.
Vậy giá trị lớn nhất của \(L = 2x + 1,6y\) là 6,8.
Trả lời: 6,8.
Lời giải
Gọi số xe lớn và số xe nhỏ mà chủ trang trại cần thuê lần lượt là \(x;y\left( {x,y \in \mathbb{N}} \right)\).
Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}15x + 12y \ge 120\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}5x + 4y \ge 40\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\).
Miền nghiệm của hệ bất phương trình là miền trong của ngũ giác ABCDE (kể cả bờ) với \(A\left( {2;10} \right),B\left( {9;10} \right),C\left( {9;0} \right),D\left( {8;0} \right),E\left( {4;5} \right)\).
Theo đề bài ta có biểu thức biểu thị số tiền thuê xe là \(F = 500x + 350y\)(nghìn đồng).
Với A(2; 10) thì F = 4500;
Với B(9; 10) thì F = 8000;
Với C(9; 0) thì F = 4500;
Với D(8; 0) thì F = 4000;
Với E(4; 5) thì F = 3750.
Vậy số tiền thuê thấp nhất để chở 120 con bò sữa và 30 tấn thức ăn cho bò là 3750000 đồng khi thuê 4 xe lớn và 5 xe nhỏ.
Trả lời: 3750.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.