Câu hỏi:

16/09/2025 9 Lưu

Phần không gạch chéo ở hình sau đây (kể cả biên) là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn đáp án \[A\,,\,\,B\,,\,\,C\,,\,\,D\]?

vvvvvvv (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta thấy miền nghiệm nằm hoàn toàn phía trên trục hoành nên loại B, D.

Đường thẳng d đi qua điểm (2; 0) và (0; 3) nên ta có phương trình \(3x + 2y - 6 = 0\).

Lấy điểm (0; 1) thuộc miền nghiệm thay vào phương trình đường thẳng d ta được \(2.1 - 6 = - 4 < 0\).

Suy ra \(3x + 2y - 6 \le 0\) hay \(3x + 2y \le 6\).

Vậy miền nghiệm trên là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}y \ge 0\\3x + 2y \le 6\end{array} \right.\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số tấn sản phẩm I sản xuất trong một ngày, \(y\) là số tấn sản phẩm II sản xuất trong một ngày thì ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + y \le 6\\x + y \le 4\end{array} \right.\).

Tổng số tiền lãi thu được là \(L = 2x + 1,6y\) triệu đồng.

Miền nghiệm của hệ bất phương trình trên là phần tô đậm ở hình vẽ

vvvvv (ảnh 1)

Ta có \(L = 2x + 1,6y\) đạt giá trị lớn nhất chỉ có thể ở các điểm O, A, B, C.

Với O(0; 0) thì L = 0.

Với A(2; 0) thì L = 4.

Với B(1; 3) thì L = 6,8.

Với C(0; 4) thì L = 6,4.

Vậy giá trị lớn nhất của \(L = 2x + 1,6y\) là 6,8.

Trả lời: 6,8.

Lời giải

Miền nghiệm của hệ là miền tam giác ABC với \(A\left( { - 5; - 1} \right);B\left( { - 1; - 2} \right);C\left( {5;4} \right)\).

nnnnnnn (ảnh 1)

Ta có \(T = 3x - 2y - 4\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C.

Với \(A\left( { - 5; - 1} \right)\) thì T = −17.

Với \(B\left( { - 1; - 2} \right)\) thì T = −3.

Với \(C\left( {5;4} \right)\) thì T = 3.

Vậy T đạt giá trị nhỏ nhất bằng −17 khi \(x = - 5;y = - 1\).

Do đó \({x_0} = - 5;{y_0} = - 1\). Do đó \(x_0^2 + y_0^2 = 26\).

Trả lời: 26.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP