Câu hỏi:

16/09/2025 6 Lưu

Một công ty trong một đợt quảng cáo và bán hàng khuyến mại hàng hóa cho một sản phẩm mới của công ty cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe lại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng; xe B chở tối đa 10 người và 1,5 tấn hàng. Gọi \(x,y\) lần lượt là số xe loại A và loại B mà công ty thuê.

a) Số tiền thuê xe là \(4x + 3y\).

b) \(2x + y < 14\).

c) \(2x + 5y \ge 30\).

d) Số tiền thuê xe thấp nhất là 32 triệu.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x;y\) lần lượt là số xe loại A và loại B cần phải thuê (\(x,y \in \mathbb{N}\)). Khi đó số tiền thuê xe là \(T = 4x + 3y\) (triệu đồng).

Theo bài ra ta có hệ phương trình \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\20x + 10y \ge 140\\0,6x + 1,5y \ge 9\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\2x + y \ge 14\\2x + 5y \ge 30\end{array} \right.\).

Miền nghiệm của hệ là miền đa giác ABCD kể cả biên (phần tô màu)

Số tiền thuê xe thấp nhất là 32 triệu. (ảnh 1)

Ta thấy \(T = 4x + 3y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C, D.

Với \(A\left( {\frac{5}{2};9} \right)\) thì T = 37.

Với \(B\left( {10;9} \right)\) thì T = 67.

Với \(C\left( {10;2} \right)\) thì T = 46.

Với \(D\left( {5;4} \right)\) thì T = 32.

Vậy giá trị nhỏ nhất của T là 32 đạt tại \(x = 5;y = 4\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số tấn sản phẩm I sản xuất trong một ngày, \(y\) là số tấn sản phẩm II sản xuất trong một ngày thì ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + y \le 6\\x + y \le 4\end{array} \right.\).

Tổng số tiền lãi thu được là \(L = 2x + 1,6y\) triệu đồng.

Miền nghiệm của hệ bất phương trình trên là phần tô đậm ở hình vẽ

vvvvv (ảnh 1)

Ta có \(L = 2x + 1,6y\) đạt giá trị lớn nhất chỉ có thể ở các điểm O, A, B, C.

Với O(0; 0) thì L = 0.

Với A(2; 0) thì L = 4.

Với B(1; 3) thì L = 6,8.

Với C(0; 4) thì L = 6,4.

Vậy giá trị lớn nhất của \(L = 2x + 1,6y\) là 6,8.

Trả lời: 6,8.

Lời giải

Miền nghiệm của hệ là miền tam giác ABC với \(A\left( { - 5; - 1} \right);B\left( { - 1; - 2} \right);C\left( {5;4} \right)\).

nnnnnnn (ảnh 1)

Ta có \(T = 3x - 2y - 4\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C.

Với \(A\left( { - 5; - 1} \right)\) thì T = −17.

Với \(B\left( { - 1; - 2} \right)\) thì T = −3.

Với \(C\left( {5;4} \right)\) thì T = 3.

Vậy T đạt giá trị nhỏ nhất bằng −17 khi \(x = - 5;y = - 1\).

Do đó \({x_0} = - 5;{y_0} = - 1\). Do đó \(x_0^2 + y_0^2 = 26\).

Trả lời: 26.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP