Câu hỏi:

16/09/2025 60 Lưu

Một hộ nông dân định trồng ngô và khoai lang trên diện tích 4 ha. Trên diện tích mỗi ha, nếu trồng ngô thì cần 10 công và thu 2 triệu đồng, nếu trồng khoai lang thì cần 15 công và thu 2,5 triệu đồng. Biết tổng số công không quá 45 công. Gọi \(x;y\) lần lượt là số ha trồng ngô và khoai lang của hộ nông dân đó.

a) Tổng số công cần sử dụng là \(15x + 10y\).

b) Tổng số tiền thu được là \(F\left( {x;y} \right) = 2x + 2,5y\) triệu đồng.

c) Theo bài ra ta có hệ phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 4\\10x + 15y \le 45\end{array} \right.\).

d) Hộ nông dân đó thu được số tiền nhiều nhất là 8 triệu đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Tổng số công cần sử dụng là \(10x + 15y\).

b) Tổng số tiền thu được là \(F\left( {x;y} \right) = 2x + 2,5y\).

c) Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 4\\10x + 15y \le 45\end{array} \right.\).

d) Miền nghiệm của hệ đã cho là miền trong của tứ giác OABD kể cả biên (phần tô màu) như hình.

Hộ nông dân đó thu được số tiền nhiều nhất là 8 triệu đồng. (ảnh 1)

Ta thấy \(F = 2x + 2,5y\) đạt giá trị lớn nhất chỉ có thể tại các điểm O, A, B, D.

Tại O(0; 0) thì F = 0;

Tại A(0; 3) thì F = 7,5;

Tại B(3; 1) thì F = 8,5.

Tại D(4; 0) thì F = 8.

Vậy hộ nông dân đó thu được số tiền nhiều nhất là 8,5 triệu đồng.

Đáp án: a) Sai;   b) Đúng;   c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Nhân ngày tết trung thu, một rạp chiếu phim phục vụ khán giả một bộ phim hoạt hình. Vé bán ra có hai loại:

Loại 1 (dành cho trẻ từ 6 – 13 tuổi): 50000 đồng/vé.

Loại 2 (dành cho người trên 13 tuổi): 100000 đồng/vé.

Người ta tính toán rằng nếu bán được \(x\) vé loại 1 và \(y\) vé loại 2, để không phải bù lỗ thì số tiền vé thu được phải đạt tối thiểu 20 triệu đồng.

a) Số tiền bán được của vé loại 1 là \(50000x\), số tiền bán được của vé loại 2 là \(100000y\) với điều kiện \(x \ge 0;y \ge 0\).

b) Bất phương trình biểu thị mối liên hệ giữa \(x\)\(y\) để rạp phim không bị lỗ là \(50x + 100y \le 20000\).

c) \(\left( {200;100} \right)\) là một nghiệm của bất phương trình bậc nhất \(50x + 100y \ge 20000\).

d) Miền nghiệm của bất phương trình \(50x + 100y \ge 20000\) là nửa mặt phẳng bờ là đường thẳng \(d:50x + 100y = 20000\) không chứa điểm \(O\left( {0;0} \right)\).

Lời giải

a) Số tiền bán được của vé loại 1 là \(50000x\), số tiền bán được của vé loại 2 là \(100000y\) với điều kiện \(x \ge 0;y \ge 0\).

b) Bất phương trình biểu thị mối liên hệ giữa \(x\)\(y\) để rạp phim không bị lỗ là:

\(50000x + 100000y \ge 20000000\)\( \Leftrightarrow 50x + 100y \ge 20000\).

c) Thay \(x = 200;y = 100\) vào bất phương trình \(50x + 100y \ge 20000\) ta thấy thoả mãn.

Vậy \(\left( {200;100} \right)\) là một nghiệm của bất phương trình bậc nhất \(50x + 100y \ge 20000\).

d) Thay điểm (0; 0) vào bất phương trình ta thấy không thỏa mãn.

Do đó miền nghiệm của bất phương trình \(50x + 100y \ge 20000\) là nửa mặt phẳng bờ là đường thẳng \(d:50x + 100y = 20000\) không chứa điểm \(O\left( {0;0} \right)\).

Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.

Lời giải

Điểm (1; 1) không thuộc miền nghiệm của bất phương trình \(x + \left( {m + 1} \right)y + 1 \ge 0\) khi và chỉ khi \(\left( {x;y} \right) = \left( {1;1} \right)\) là nghiệm của bất phương trình \(x + \left( {m + 1} \right)y + 1 < 0\).

Khi đó ta có \(1 + m + 1 + 1 < 0 \Leftrightarrow m + 3 < 0 \Leftrightarrow m < - 3\).

\(m \in \mathbb{Z},m \in \left[ { - 2022;2022} \right]\) nên \(m \in \left\{ { - 2022; - 2021;...; - 4} \right\}\).

Vậy có 2019 giá trị nguyên \(m\) thỏa mãn.

Trả lời: 2019.

Câu 3

A. \(x + y > 1\).                      
B. \(x - y < 1\).                       
C. \(x + y \le 1\).                                          
D. \(x - y \le 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[x + 2y < 4\].                                                                   
B. \[2x + y \ge 4\].                               
C. \[x + 2y \ge 4\].                                                                 
D. \[x + 2y > 4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2x - y + 1 \le 0\).                                              
B. \(2x - y + 1 > 0\).                                    
C. \(x - y + 1 \ge 0\).                                               
D. \(x - y + 1 < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[2x + y - 6 > 0\].                                                              
B. \[2x + y - 6 < 0\].                                                                                      
C. \[x + 2y - 6 < 0\].                                                              
D. \[x + 2y - 6 > 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hình 1.                   

B. Hình 2.                                            
C. Hình 3.                                                                                               
D. Hình 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP