Một hộ nông dân định trồng ngô và khoai lang trên diện tích 4 ha. Trên diện tích mỗi ha, nếu trồng ngô thì cần 10 công và thu 2 triệu đồng, nếu trồng khoai lang thì cần 15 công và thu 2,5 triệu đồng. Biết tổng số công không quá 45 công. Gọi \(x;y\) lần lượt là số ha trồng ngô và khoai lang của hộ nông dân đó.
a) Tổng số công cần sử dụng là \(15x + 10y\).
b) Tổng số tiền thu được là \(F\left( {x;y} \right) = 2x + 2,5y\) triệu đồng.
c) Theo bài ra ta có hệ phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 4\\10x + 15y \le 45\end{array} \right.\).
d) Hộ nông dân đó thu được số tiền nhiều nhất là 8 triệu đồng.
Một hộ nông dân định trồng ngô và khoai lang trên diện tích 4 ha. Trên diện tích mỗi ha, nếu trồng ngô thì cần 10 công và thu 2 triệu đồng, nếu trồng khoai lang thì cần 15 công và thu 2,5 triệu đồng. Biết tổng số công không quá 45 công. Gọi \(x;y\) lần lượt là số ha trồng ngô và khoai lang của hộ nông dân đó.
a) Tổng số công cần sử dụng là \(15x + 10y\).
b) Tổng số tiền thu được là \(F\left( {x;y} \right) = 2x + 2,5y\) triệu đồng.
c) Theo bài ra ta có hệ phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 4\\10x + 15y \le 45\end{array} \right.\).
d) Hộ nông dân đó thu được số tiền nhiều nhất là 8 triệu đồng.
Quảng cáo
Trả lời:

a) Tổng số công cần sử dụng là \(10x + 15y\).
b) Tổng số tiền thu được là \(F\left( {x;y} \right) = 2x + 2,5y\).
c) Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 4\\10x + 15y \le 45\end{array} \right.\).
d) Miền nghiệm của hệ đã cho là miền trong của tứ giác OABD kể cả biên (phần tô màu) như hình.
Ta thấy \(F = 2x + 2,5y\) đạt giá trị lớn nhất chỉ có thể tại các điểm O, A, B, D.
Tại O(0; 0) thì F = 0;
Tại A(0; 3) thì F = 7,5;
Tại B(3; 1) thì F = 8,5.
Tại D(4; 0) thì F = 8.
Vậy hộ nông dân đó thu được số tiền nhiều nhất là 8,5 triệu đồng.
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số xe lớn và số xe nhỏ mà chủ trang trại cần thuê lần lượt là \(x;y\left( {x,y \in \mathbb{N}} \right)\).
Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}15x + 12y \ge 120\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}5x + 4y \ge 40\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\).
Miền nghiệm của hệ bất phương trình là miền trong của ngũ giác ABCDE (kể cả bờ) với \(A\left( {2;10} \right),B\left( {9;10} \right),C\left( {9;0} \right),D\left( {8;0} \right),E\left( {4;5} \right)\).
Theo đề bài ta có biểu thức biểu thị số tiền thuê xe là \(F = 500x + 350y\)(nghìn đồng).
Với A(2; 10) thì F = 4500;
Với B(9; 10) thì F = 8000;
Với C(9; 0) thì F = 4500;
Với D(8; 0) thì F = 4000;
Với E(4; 5) thì F = 3750.
Vậy số tiền thuê thấp nhất để chở 120 con bò sữa và 30 tấn thức ăn cho bò là 3750000 đồng khi thuê 4 xe lớn và 5 xe nhỏ.
Trả lời: 3750.
Lời giải
Gọi \(x\) là số tấn sản phẩm I sản xuất trong một ngày, \(y\) là số tấn sản phẩm II sản xuất trong một ngày thì ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + y \le 6\\x + y \le 4\end{array} \right.\).
Tổng số tiền lãi thu được là \(L = 2x + 1,6y\) triệu đồng.
Miền nghiệm của hệ bất phương trình trên là phần tô đậm ở hình vẽ
Ta có \(L = 2x + 1,6y\) đạt giá trị lớn nhất chỉ có thể ở các điểm O, A, B, C.
Với O(0; 0) thì L = 0.
Với A(2; 0) thì L = 4.
Với B(1; 3) thì L = 6,8.
Với C(0; 4) thì L = 6,4.
Vậy giá trị lớn nhất của \(L = 2x + 1,6y\) là 6,8.
Trả lời: 6,8.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.