Câu hỏi:

16/09/2025 21 Lưu

Một trang trại cần thuê xe để vận chuyển một lúc 120 con bò sữa và 30 tấn thức ăn cho bò. Nơi cho thuê xẻ chỉ có 9 chiếc xe lớn và 10 chiếc xe nhỏ. Một chiếc xe lớn chỉ có thể chở được 15 con bò và 5 tấn thức ăn. Một chiếc xe nhỏ chỉ có thể chở 12 con bò và 2 tấn thức ăn. Giá thuê của một chiếc xe lớn là 500 nghìn đồng và một chiệc xe nhỏ là 350 nghìn đồng. Hỏi chủ trang trại cần thuê xe với chi phí thấp nhất là bao nhiêu nghìn đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số xe lớn và số xe nhỏ mà chủ trang trại cần thuê lần lượt là \(x;y\left( {x,y \in \mathbb{N}} \right)\).

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}15x + 12y \ge 120\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}5x + 4y \ge 40\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\).

Miền nghiệm của hệ bất phương trình là miền trong của ngũ giác ABCDE (kể cả bờ) với \(A\left( {2;10} \right),B\left( {9;10} \right),C\left( {9;0} \right),D\left( {8;0} \right),E\left( {4;5} \right)\).

Hỏi chủ trang trại cần thuê xe với chi phí thấp nhất là bao nhiêu nghìn đồng? (ảnh 1)

Theo đề bài ta có biểu thức biểu thị số tiền thuê xe là \(F = 500x + 350y\)(nghìn đồng).

Với A(2; 10) thì F = 4500;

Với B(9; 10) thì F = 8000;

Với C(9; 0) thì F = 4500;

Với D(8; 0) thì F = 4000;

Với E(4; 5) thì F = 3750.

Vậy số tiền thuê thấp nhất để chở 120 con bò sữa và 30 tấn thức ăn cho bò là 3750000 đồng khi thuê 4 xe lớn và 5 xe nhỏ.

Trả lời: 3750.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số tấn sản phẩm I sản xuất trong một ngày, \(y\) là số tấn sản phẩm II sản xuất trong một ngày thì ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + y \le 6\\x + y \le 4\end{array} \right.\).

Tổng số tiền lãi thu được là \(L = 2x + 1,6y\) triệu đồng.

Miền nghiệm của hệ bất phương trình trên là phần tô đậm ở hình vẽ

vvvvv (ảnh 1)

Ta có \(L = 2x + 1,6y\) đạt giá trị lớn nhất chỉ có thể ở các điểm O, A, B, C.

Với O(0; 0) thì L = 0.

Với A(2; 0) thì L = 4.

Với B(1; 3) thì L = 6,8.

Với C(0; 4) thì L = 6,4.

Vậy giá trị lớn nhất của \(L = 2x + 1,6y\) là 6,8.

Trả lời: 6,8.

Lời giải

Giá trị lớn nhất của biểu thức \[F\left( {x\,;y} \right) = 3x - 2y + 1\] với \[\left( {x\,;y} \right)\] thỏa mãn hệ bất phương trình đã cho đạt được tại 1 trong 4 điểm (0; 0), (0; 5), (2; 4), (4; 0).

Ta có \[F\left( {0;0} \right) = 3.0 - 2.0 + 1 = 1\];

\[F\left( {0;5} \right) = 3.0 - 2.5 + 1 = - 9\];

\[F\left( {2;4} \right) = 3.2 - 2.4 + 1 = - 1\];

\[F\left( {4;0} \right) = 3.4 - 2.0 + 1 = 13\].

Vậy giá trị lớn nhất của biểu thức là 13. Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP