Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Cho phương trình \[x + 2y = 3.\]
a) Cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình đã cho.
b) Phương trình đã cho là phương trình bậc nhất một ẩn.
c) Tất cả nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = 3 - \frac{1}{2}x.\)
d) Phương trình đã cho có vô số nghiệm, nghiệm tổng quát là \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Cho phương trình \[x + 2y = 3.\]
a) Cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình đã cho.
b) Phương trình đã cho là phương trình bậc nhất một ẩn.
c) Tất cả nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = 3 - \frac{1}{2}x.\)
d) Phương trình đã cho có vô số nghiệm, nghiệm tổng quát là \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Đúng. Thay \(x = 5\) và \(y = - 1\) vào phương trình đã cho, ta được: \[5 + 2 \cdot \left( { - 1} \right) = 3.\]
Suy ra cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình \[x + 2y = 3.\] Do đó ý a) là đúng.
b) Sai. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn. Do đó ý b) là sai.
c) Sai. Viết lại phương trình \[x + 2y = 3\] thành \(y = \frac{3}{2} - \frac{1}{2}x\), khi đó tất cả các nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = \frac{3}{2} - \frac{1}{2}x\). Do đó ý c) là sai.
d) Đúng. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn, có vô số nghiệm.
Viết lại phương trình \[x + 2y = 3\] thành \(x = 3 - 2y\).
Khi đó, nghiệm tổng quát của phương trình đó là: \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý. Do đó ý d) là đúng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 14.
Ta có \[3 < \frac{{2x - 2}}{8}\]
\[2x - 2 > 24\]
\[2x > 26\]
\[x > 26:2\]
\[x > 13.\]
Do đó, bất phương trình có nghiệm \[x > 13.\]
Vậy số tự nhiên nhỏ nhất của \(x\) thỏa mãn bất phương trình đã cho là \[x = 14.\]
Lời giải
Hướng dẫn giải 1. Xét tam giác \[ABC\] vuông tại \(A\), ta có: \(AB = BC\,.\,\cos C\) nên \(BC = \frac{{AB}}{{\cos C}} = \frac{6}{{\frac{3}{5}}} = 10\,\,\left( {{\rm{cm}}} \right)\). |
|
Áp dụng định lí Pythagore, ta có: \(B{C^2} = A{B^2} + A{C^2}\)
\(A{C^2} = B{C^2} - A{B^2} = {10^2} - {6^2} = 64\), suy ra \(AC = 8\,\,{\rm{cm}}\).
Xét \(\Delta ABH\) và \(\Delta CBA\) có \(\widehat {AHB} = \widehat {BAC} = 90^\circ ;\,\,\widehat B\) chung.
Do đó .
Suy ra \(\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\) hay \(A{B^2} = BH\,.\,BC\) nên \(BH = \frac{{A{B^2}}}{{BC}} = \frac{{{6^2}}}{{10}} = 3,6\,\,\left( {{\rm{cm}}} \right)\).
Vậy \(BC = 10\,\,{\rm{cm}},\,\,AC = 8\,\,{\rm{cm}},\,\,BH = 3,6\,\,{\rm{cm}}.\)
2. Quãng đường chiếc thuyền đi được giữa hai lần quan sát là \(CD.\)
Xét \(\Delta BAC\) vuông tại \(A\) có \(AC = 75\cot \widehat {BCA} = 75\cot 45^\circ = 75\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta DAB\) vuông tại \(A\) có \(AD = 75\cot \widehat {BDA} = 75\cot 30^\circ = 75\sqrt 3 \,\,\left( {\rm{m}} \right)\).
Quãng đường chiếc thuyền đi được giữa hai lần quan sát là:
\(CD = AD - AC = 75\sqrt 3 - 75 \approx 55\,\,\left( {\rm{m}} \right)\).
Vậy chiếc thuyền đi được khoảng 55 mét giữa hai lần quan sát.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.