Câu hỏi:

18/09/2025 37 Lưu

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

Cho phương trình \[x + 2y = 3.\]

a) Cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình đã cho.

b) Phương trình đã cho là phương trình bậc nhất một ẩn.

c) Tất cả nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = 3 - \frac{1}{2}x.\)

d) Phương trình đã cho có vô số nghiệm, nghiệm tổng quát là \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Sai.        c) Sai.        d) Đúng.

a) Đúng. Thay \(x = 5\)\(y = - 1\) vào phương trình đã cho, ta được: \[5 + 2 \cdot \left( { - 1} \right) = 3.\]

Suy ra cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình \[x + 2y = 3.\] Do đó ý a) là đúng.

b) Sai. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn. Do đó ý b) là sai.

c) Sai. Viết lại phương trình \[x + 2y = 3\] thành \(y = \frac{3}{2} - \frac{1}{2}x\), khi đó tất cả các nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = \frac{3}{2} - \frac{1}{2}x\). Do đó ý c) là sai.

d) Đúng. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn, có vô số nghiệm.

Viết lại phương trình \[x + 2y = 3\] thành \(x = 3 - 2y\).

Khi đó, nghiệm tổng quát của phương trình đó là: \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý. Do đó ý d) là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giá trị của \(a\)\(b\) để cặp số \[\left( { - 2;\,\,3} \right)\] là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ax + y = 5}\\{3x + by = 0}\end{array}} \right.\)

A. \(\left( {a;\,\,b} \right) = \left( { - 3;\,\,3} \right)\).                       
B. \(\left( {a;\,\,b} \right) = \left( { - 2;\,\,1} \right)\).                       
C. \(\left( {a;\,\,b} \right) = \left( {2;\,\, - 4} \right)\).                       
D. \(\left( {a;\,\,b} \right) = \left( { - 1;\,\,2} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình, ta thay \(x = - 2\)\(y = 3\) vào hệ phương trình, ta được: \(\left\{ {\begin{array}{*{20}{l}}{a \cdot \left( { - 2} \right) + 3 = 5}\\{3 \cdot \left( { - 2} \right) + b \cdot 3 = 0}\end{array}} \right.\)

Giải hệ phương trình trên, ta được: \(\left\{ {\begin{array}{*{20}{l}}{ - 2a = 2}\\{ - 6 + 3b = 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2.}\end{array}} \right.\)

Vậy, để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình thì \(a = - 1\)\(b = 2\).

Lời giải

Hướng dẫn giải

Đáp án: 2.

Điều kiện xác định: \(x \ne 4,\,\,x \ne - 4.\)

\(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}\)

\(\frac{{2x - 5}}{{x + 4}} - \frac{x}{{x - 4}} = \frac{{ - 17x + 56}}{{{x^2} - 16}}\)

\(\frac{{\left( {2x - 5} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \frac{{x\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \frac{{ - 17x + 56}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}\)

\(\left( {2x - 5} \right)\left( {x - 4} \right) - x\left( {x + 4} \right) = - 17x + 56\)

\(2{x^2} - 8x - 5x + 20 - {x^2} - 4x = - 17x + 56\)

\({x^2} = 36\)

\(x = 6\) (thỏa mãn) hoặc \(x = - 6\) (thỏa mãn).

Vậy nghiệm của phương trình đã cho là \(x = 6;\,\,x = - 6.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP