Câu hỏi:

18/09/2025 5 Lưu

Cặp số nào dưới đây là thuộc đường thẳng biểu diễn nghiệm của phương trình \[2x--5y = 19?\]

A. \[\left( {2\,;\,\, - 3} \right).\]                           
B. \[\left( {1\,;\,\,1} \right).\]                        
C. \[\left( {1\,;\,\, - 2} \right).\]                           
D. \[\left( {12\,;\,\, - 1} \right).\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

• Thay \[x = 2,{\rm{ }}y = - 3\] vào phương trình \[2x--5y = 19\] ta được: \[2 \cdot 2--5 \cdot \left( { - 3} \right) = 19.\]

Do đó cặp số \[\left( {2\,;\,\, - 3} \right)\] thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.

• Thay x = 1, y = 1 vào phương trình \[2x--5y = 19\] ta được: \[2 \cdot 1--5 \cdot 1 = 7 \ne 19.\]

Do đó, cặp số \[\left( {1\,;\,\,1} \right)\] không thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.

• Thay \[x = 1,{\rm{ }}y = - 2\] vào phương trình \[2x--5y = 19\] ta được: \[2 \cdot 1--5 \cdot \left( { - 2} \right) = 12 \ne 19.\]

Do đó, cặp số \[\left( {1\,;\,\, - 2} \right)\] không thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.

• Thay \[x = 12,{\rm{ }}y = - 1\] vào phương trình \[2x--5y = 19\] ta được \[2 \cdot 12 - 5 \cdot \left( { - 1} \right) = 27 \ne 19.\]

Do đó, cặp số \[\left( {12\,;\,\, - 1} \right)\] không thuộc đường thẳng biểu diễn nghiệm của phương trình đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[x = 5.\]                                                         
B. \[x = - 5.\]
C. Phương trình vô nghiệm.                               
D. Phương trình vô số nghiệm.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Điều kiện xác định: \[x \ne 5\]\[x \ne - 5.\]

Ta có: \(\frac{3}{{4\left( {x - 5} \right)}} + \frac{{15}}{{50 - 2{x^2}}} = \frac{7}{{6x + 30}}\)

\(\frac{3}{{4\left( {x - 5} \right)}} - \frac{{15}}{{2\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{7}{{6\left( {x + 5} \right)}}\)

\(\frac{{9\left( {x + 5} \right)}}{{12\left( {x - 5} \right)\left( {x + 5} \right)}} - \frac{{15.6}}{{12\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{{14\left( {x - 5} \right)}}{{6\left( {x + 5} \right)\left( {x - 5} \right)}}\)

\[9\left( {x + 5} \right)--90 = 14\left( {x--5} \right)\]

\[9x + 45--90 = 14x--70\]

\[5x = 25\]

\[x = 5\] (loại).

Vậy phương trình đã cho vô nghiệm.

Lời giải

Hướng dẫn giải

Đáp án: 0.

Điều kiện xác định: \(x \ne 1;\,\,x \ne 2.\)

\(\frac{1}{{x - 1}} - \frac{7}{{x - 2}} = \frac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\)

\(\frac{{1 \cdot \left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \frac{{7 \cdot \left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{{ - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)

\(1 \cdot \left( {x - 2} \right) - 7 \cdot \left( {x - 1} \right) = - 1\)

\(x - 2 - 7x + 7 = - 1\)

\( - 6x = - 6\)

    \(x = 1\) (không thỏa mãn điều kiện).

Vậy phương trình vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{\sqrt 3 }}{2}.\)                                    
B. \(\frac{1}{2}\).          
C. \(\frac{{\sqrt 2 }}{2}.\)   
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x \ne 3.\)                
B. \(x \ne - 3.\)             
C. \(x \ne 0\) và \(x \ne 3.\)                                      
D. \(x \ne - 3\) và \(x \ne 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP