Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{2}x - \frac{1}{2}y = - 1}\\{ - 3x + 3y = 5}\end{array}} \right..\) Cho các khẳng định sau:
(i) Nhân phương trình thứ nhất của hệ với 6, rồi cộng với phương trình thứ hai ta được phương trình: \[6y = -1.\]
(ii) Nhân phương trình thứ nhất của hệ với 6, rồi cộng với phương trình thứ hai ta được phương trình: \[0x = -1.\]
(iii) Hệ phương trình đã cho vô nghiệm.
Số khẳng định đúng trong các khẳng định trên là
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: C
Nhân phương trình thứ nhất của hệ với 6, ta được phương trình mới \(3x - 3y = - 6,\) cộng với phương trình thứ hai ta được phương trình: \(0x = - 1\) (hoặc phương trình \(0y = - 1\)).
Phương trình trên vô nghiệm nên hệ phương trình đã cho vô nghiệm.
Như vậy, có 2 khẳng định đúng là (ii), (iii). Ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 3.
Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\).
Với MTCT phù hợp, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(x = 2,\) ta bấm tiếp phím màn hình cho kết quả \(y = 1.\)
Do đó \[x + y = 2 + 1 = 3.\]
Cách 2. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(4x = 8\), suy ra \(x = 2.\)
Thay \(x = 2\) vào phương trình \(x - y = 1,\) ta được: \(2 - y = 1,\) suy ra \(y = 1.\)
Do đó \[x + y = 2 + 1 = 3.\]
Lời giải
Hướng dẫn giải
Đáp án: 0.
Điều kiện xác định: \(x \ne 1;\,\,x \ne 2.\)
\(\frac{1}{{x - 1}} - \frac{7}{{x - 2}} = \frac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\)
\(\frac{{1 \cdot \left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \frac{{7 \cdot \left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{{ - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
\(1 \cdot \left( {x - 2} \right) - 7 \cdot \left( {x - 1} \right) = - 1\)
\(x - 2 - 7x + 7 = - 1\)
\( - 6x = - 6\)
\(x = 1\) (không thỏa mãn điều kiện).
Vậy phương trình vô nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.