Câu hỏi:

22/09/2025 32 Lưu

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{2}x - \frac{1}{2}y = - 1}\\{ - 3x + 3y = 5}\end{array}} \right..\) Cho các khẳng định sau:

(i) Nhân phương trình thứ nhất của hệ với 6, rồi cộng với phương trình thứ hai ta được phương trình: \[6y = -1.\]

(ii) Nhân phương trình thứ nhất của hệ với 6, rồi cộng với phương trình thứ hai ta được phương trình: \[0x = -1.\]

(iii) Hệ phương trình đã cho vô nghiệm.

Số khẳng định đúng trong các khẳng định trên là

A. 0.                              
B. 1.                              
C. 2.                                                                    
D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Nhân phương trình thứ nhất của hệ với 6, ta được phương trình mới \(3x - 3y = - 6,\) cộng với phương trình thứ hai ta được phương trình: \(0x = - 1\) (hoặc phương trình \(0y = - 1\)).

Phương trình trên vô nghiệm nên hệ phương trình đã cho vô nghiệm.

Như vậy, có 2 khẳng định đúng là (ii), (iii). Ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 3.

Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\).

Với MTCT phù hợp, ta bấm lần lượt các phím:

 

Trên màn hình cho kết quả \(x = 2,\) ta bấm tiếp phím  màn hình cho kết quả \(y = 1.\)

Do đó \[x + y = 2 + 1 = 3.\]

Cách 2. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(4x = 8\), suy ra \(x = 2.\)

Thay \(x = 2\) vào phương trình \(x - y = 1,\) ta được: \(2 - y = 1,\) suy ra \(y = 1.\)

Do đó \[x + y = 2 + 1 = 3.\]

Lời giải

Hướng dẫn giải

Đáp án: 0.

Điều kiện xác định: \(x \ne 1;\,\,x \ne 2.\)

\(\frac{1}{{x - 1}} - \frac{7}{{x - 2}} = \frac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\)

\(\frac{{1 \cdot \left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \frac{{7 \cdot \left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{{ - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)

\(1 \cdot \left( {x - 2} \right) - 7 \cdot \left( {x - 1} \right) = - 1\)

\(x - 2 - 7x + 7 = - 1\)

\( - 6x = - 6\)

    \(x = 1\) (không thỏa mãn điều kiện).

Vậy phương trình vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x \ne 3.\)                
B. \(x \ne - 3.\)             
C. \(x \ne 0\) và \(x \ne 3.\)                                      
D. \(x \ne - 3\) và \(x \ne 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[x = 5.\]                                                         
B. \[x = - 5.\]
C. Phương trình vô nghiệm.                               
D. Phương trình vô số nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP