Câu hỏi:

18/09/2025 7 Lưu

Cho hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\) có nghiệm \[\left( {x\,;\,\,y} \right).\] Tính tổng \[x + y\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 3.

Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\).

Với MTCT phù hợp, ta bấm lần lượt các phím:

 

Trên màn hình cho kết quả \(x = 2,\) ta bấm tiếp phím  màn hình cho kết quả \(y = 1.\)

Do đó \[x + y = 2 + 1 = 3.\]

Cách 2. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(4x = 8\), suy ra \(x = 2.\)

Thay \(x = 2\) vào phương trình \(x - y = 1,\) ta được: \(2 - y = 1,\) suy ra \(y = 1.\)

Do đó \[x + y = 2 + 1 = 3.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \[ - {\bf{3}}\].

Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]

\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]

\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]

\[3x < - 7\]

\[x < - \frac{7}{3}\]

Do đó, nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]

Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x = - 3.\)

Lời giải

Hướng dẫn giải

Gọi \(x,\,\,y\) lần lượt là số calo đã tiêu hao trong mỗi phút tập Yoga và Jumping jacks \(\left( {x > y > 0} \right).\)

Theo đề bài, anh Hoài đã đến phòng tập thể dục và tập 40 phút Yoga, sau đó nhảy Jumping jacks 10 phút và tiêu hao được 510 calo nên ta có phương trình

\[40x + 10y = 510\] hay \[4x + y = 51{\rm{ }}\left( 1 \right)\]

Lần tiếp theo anh Hoài tập 30 phút Yoga và nhảy Jumping jacks 20 phút thì tiêu hao được là 470 calo nên ta có phương trình

\[30x + 20y = 470\] hay \[3x + 2y = 47{\rm{ }}\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \[\left\{ \begin{array}{l}4x + y = 51\\3x + 2y = 47\end{array} \right.\].

Nhân hai vế của phương trình thứ nhất của hệ trên với 2, ta được: \[\left\{ \begin{array}{l}8x + 2y = 102\\3x + 2y = 47\end{array} \right.\].

Trừ từng vế hai phương trình của hệ trên, ta được: \(5x = 55\), suy ra \(x = 11\) (thỏa mãn).

Thay \(x = 11\) vào phương trình \[4x + y = 51\], ta được:

\[4 \cdot 11 + y = 51\] suy ra \(y = 7\) (thỏa mãn).

Vậy số calo tiêu hao trong mỗi phút tập Yoga là 11 calo và số calo tiêu hao trong mỗi phút nhảy Jumping jacks là 7 calo.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{\sqrt 3 }}{2}.\)                                    
B. \(\frac{1}{2}\).          
C. \(\frac{{\sqrt 2 }}{2}.\)   
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP