Câu hỏi:

18/09/2025 43 Lưu

(1,5 điểm)

1) Cho tam giác \(ABC\) có đường cao \(AH = 5\,\,{\rm{cm}},\,\,\widehat B = 70^\circ ,\,\,\widehat C = 35^\circ .\) Tính độ dài các cạnh của tam giác \(ABC\) (làm tròn kết quả đến chữ số thập phân thứ hai).

2) Một người quan sát ở đài hải đăng cao \(149\,\,{\rm{m}}\) so với mực nước biển nhìn thấy một con tàu ở xa với một góc nghiêng xuống đất là \(27^\circ .\) Hỏi tàu đang đứng cách chân hải đăng là bao nhiêu mét? (làm tròn kết quả đến hàng đơn vị)

BBBBBB (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

1) Xét tam giác \(AHB\) vuông tại \(H\) nên \(\sin B = \frac{{AH}}{{AB}}\)

Suy ra \(AB = \frac{{AH}}{{\sin B}} = \frac{5}{{\sin 70^\circ }} \approx 5,32\,\,\left( {{\rm{cm}}} \right)\)

Xét tam giác \(AHC\) vuông tại \(H\) nên \(\sin C = \frac{{AH}}{{AC}}\)

Suy ra \(AC = \frac{{AH}}{{\sin C}} = \frac{5}{{\sin 35^\circ }} \approx 8,72\,\,\left( {{\rm{cm}}} \right)\)

 BBBBBB (ảnh 2)

Áp dụng hệ thức giữa cạnh huyền và cạnh góc vuông trong tam giác vuông, ta có

\(BH = AH \cdot \cot B = 5 \cdot \cot 70^\circ \approx 1,82\,\,\left( {{\rm{cm}}} \right)\)

\(CH = AH \cdot \cot C = 5 \cdot \cot 35^\circ \approx 7,14\,\,\left( {{\rm{cm}}} \right)\)

Do đó \(BC = BH + HC \approx 1,82 + 7,14 = 8,96\,\,\left( {{\rm{cm}}} \right)\)

Vậy độ dài các cạnh của tam giác \(ABC\) là \(AB \approx 5,32\,\,{\rm{cm}}\,{\rm{,}}\,\,AC \approx 8,72\,\,{\rm{cm}}\,{\rm{,}}\,\,BC \approx 8,96\,\,{\rm{cm}}\,.\)

2) Giả sử trong hình vẽ \(BC\) là độ cao của ngọn hải đăng so với mực nước biển thì \(AB\) là khoảng cách từ tàu đến chân ngọn hải đăng, góc nghiêng xuống \[\widehat {ACx} = 27^\circ \] nên \[\widehat {CAB} = 27^\circ .\]

Xét \(\Delta ABC\) vuông tại \(B\) có \(AB = BC \cdot \cot \widehat {CAB}\).

Suy ra \[AB = 149 \cdot \cot 27^\circ \approx 292\,\,\left( {\rm{m}} \right)\].

BBBBBB (ảnh 3)

Vậy tàu đang đứng cách chân hải đăng khoảng 292 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \[ - {\bf{3}}\].

Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;-3\]

\[{x^2} + 4x + 4\; < x + {x^2}\;-3\]

\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]

\[3x < - 7\]

\[x < - \frac{7}{3}\]

Do đó, nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]

Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x = - 3.\)

Lời giải

Hướng dẫn giải

Điểm trung bình của 40 học sinh là: \(\frac{{300}}{4} = 7,5\) (điểm).

Giả sử có một học sinh có điểm lớn hơn 30. Gọi điểm của học sinh đó là \[{a_k} > 30.\]

Điểm của các học sinh còn lại là \[{a_1},\,\,{a_2},\,\, \ldots ,\,\,{a_{k - 1}},\,\,{a_{k + 1}}\,\,,\,\, \ldots ,\,\,{a_{40}}.\]

Tổng điểm của các học sinh còn lại là: \[S = 300 - {a_k}.\]

\[{a_k} > 30\] thì \[S < 300 - 30 = 270.\]

Số lượng học sinh còn lại là 39 nên trung bình điểm của các học sinh còn lại là:

\[M = \frac{S}{{39}} < \frac{{270}}{{39}} \approx 6,92.\]

Theo giả thiết, không có học sinh nào có điểm dưới 10.

Do đó, tổng điểm tối thiểu của 39 học sinh còn lại là: \[S\, \ge 10 \cdot 39 = 390.\]

Mà \[S < 270\] dẫn đến mâu thuẫn.

Vậy không có học sinh nào có điểm lớn hơn 30.

Câu 3

A. \(\left( {x;\,\,2} \right)\) với \(x \in \mathbb{R}\).                                        
B. \(\left( {2;\,\,y} \right)\) với \(y \in \mathbb{R}\).                      
C. \(\left( {x;\,\,0} \right)\) với \(x \in \mathbb{R}\).                                        
D. \(\left( {0;\,\,y} \right)\) với \(y \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x \ne 3.\)                
B. \(x \ne - 3.\)             
C. \(x \ne 0\) và \(x \ne 3.\)                                      
D. \(x \ne - 3\) và \(x \ne 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP