Câu hỏi:

20/09/2025 61 Lưu

Bạn Như làm một cái lòng đèn hình quả trám (như hình bên) là hình ghép từ hai hình chóp tứ giác đều có cạnh đáy \[20\,\,{\rm{cm}}\], cạnh bên \[32\,\,{\rm{cm}}\,{\rm{,}}\] khoảng cách giữa hai đỉnh của hai hình chóp là \[30\,\,{\rm{cm}}.\]

a) Công thức tính thể tích hình chóp tứ giác đều: \(V = S \cdot h.\)  (Trong đó \(V\) là thể tích, \(S\) là diện tích đáy, \(h\) là chiều cao của hình chóp tứ giác đều). (ảnh 1)

a) Công thức tính thể tích hình chóp tứ giác đều: \(V = S \cdot h.\)

(Trong đó \(V\) là thể tích, \(S\) là diện tích đáy, \(h\) là chiều cao của hình chóp tứ giác đều).

b) Chiều cao của mỗi hình chóp tứ giác đều là 15 cm.

c) Thể tích của lồng đèn là \(4\,\,000\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)

d) Bạn Như muốn làm 50 cái lòng đèn hình quả trám này cần phải chuẩn bị 165 mét thanh tre? (mối nối giữa các que tre có độ dài không đáng kể).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:     a) Sai.        b) Đúng.    c) Đúng.     d) Sai.

a) Công thức tính thể tích hình chóp tứ giác đều: \(V = \frac{1}{3} \cdot S \cdot h.\)

Trong đó \(V\) là thể tích, \(S\) là diện tích đáy, \(h\) là chiều cao của hình chóp tứ giác đều). Do đó ý a) sai.

Chiều cao của mỗi hình chóp tứ giác đều là: \[30:2 = 15{\rm{ (cm)}}.\]Do đó ý b) đúng.

Thể tích của lòng đèn quả trám là: \(V = 2 \cdot \left( {\frac{1}{3} \cdot 20 \cdot 20 \cdot 15} \right) = 4\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\). Do đó ý c) đúng.

Bạn Như muốn làm 50 cái lòng đèn hình quả trám này cần phải chuẩn bị số mét thanh tre là:

\[50 \cdot \,\left( {20 \cdot 4 + 32 \cdot 8} \right) = 16\,\,800 (cm) = 168\,\,(m)\].

Vậy bạn Như muốn làm 50 cái lòng đèn hình quả trám này cần phải chuẩn bị 168 mét thanh tre.

 Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.         b) Đúng.         c) Sai.             d) Đúng.

Thể tích của bể bơi thứ nhất là: \(1,4 \cdot x \cdot y = 1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý a) đúng.

Diện tích đáy của bể bơi thứ nhất là: \(x \cdot y = xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Mà diện tích đáy của bê bơi thứ hai gấp 3 lần diện tích đáy của bể bơi thứ nhất.

Như vậy, diện tích đáy của bể bơi thứ hai là: \(3xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\). Do đó ý b) đúng.

Thể tích của bể bơi thứ hai là: \(1,6 \cdot 3xy = 4,8xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

\(4,8 < 5\) nên \(4,8xy < 5xy\).

Như vậy, thể tích của bể bơi thứ hai nhỏ hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý c) sai.

Tổng thể tích hai bể bơi là: \(4,8xy + 1,4xy = 6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

Thể tích nước cần bơm đầy hai bể bơi chính bằng tổng thể tích của của hai bể bơi và bằng \(6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\) Do đó ý d) đúng.

Lời giải

Hướng dẫn giải

Đáp số: 200.

Tứ giác \(ABCD\) có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \).

Suy ra \[\widehat A + \widehat B = 360^\circ - \widehat C - \widehat D = 360^\circ - 50^\circ - 60^\circ = 250^\circ .\]

Ta có \(\widehat A:\widehat B = 3:2\) nên \[\frac{{\widehat A}}{{\widehat B}} = \frac{3}{2}\] hay \[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2}\].

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2} = \frac{{\widehat A + \widehat B}}{{3 + 2}} = \frac{{250^\circ }}{5} = 50^\circ .\]

Suy ra \[\widehat A = 3 \cdot 50^\circ = 150^\circ \,;\,\,\widehat B = 2 \cdot 50^\circ = 100^\circ .\]

Do đó \(2\widehat A - \widehat B = 2 \cdot 150^\circ - 100^\circ = 200^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho biểu thức \(A = \left( {\frac{{a + 2}}{{a + 1}} - \frac{{a - 2}}{{a - 1}}} \right).\frac{{a + 1}}{a}\)\(B = \frac{3}{{{a^2} - 1}}\) với \(a \ne 0\,;\,\,a \ne 1\,;\,\,a \ne - 1\). Tìm giá trị của \(a\) để \(A = 2B\). (Kết quả ghi dưới dạng số thập phân)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP