Một cây cao \[12\,\,{\rm{m}}\] mọc cạnh bờ sông. Trên đỉnh cây có một con chim đang đậu và chuẩn bị sà xuống bắt con cá trên mặt nước (như Hình 1 và được mô phỏng như Hình 2). Hỏi con chim sẽ bay một đoạn ngắn nhất bằng bao nhiêu mét thì bắt được con cá? (Biết con cá cách gốc cây \[5\,\,{\rm{m}}\] và nước cao mấp mé bờ sông).
![Hỏi con chim sẽ bay một đoạn ngắn nhất bằng bao nhiêu mét thì bắt được con cá? (Biết con cá cách gốc cây \[5\,\,{\rm{m}}\] và nước cao mấp mé bờ sông). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/19-1758419050.png)
A. \(12\;\;{\rm{cm}}\).
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: B
Áp dụng định lý Pythagore vào \(\Delta ABC\) vuông tại \[A\], ta có:
\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 25 + 144 = 169.\)
Suy ra \[BC = 13\,\,{\rm{m}}{\rm{.}}\]
Vậy con chim bay được một đoạn bằng \[13\,\,{\rm{m}}\] thì bắt được con cá.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có \[x{y^3} + 4x{y^3} - 2x{y^3} = \left( {1 + 4 - 2} \right)x{y^3} = 3x{y^3}.\]
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có \( - 3{x^3}{y^2} \cdot \frac{1}{9}xy = \left( { - 3 \cdot \frac{1}{9}} \right) \cdot \left( {{x^3} \cdot x} \right) \cdot \left( {{y^2} \cdot y} \right) = - \frac{1}{3}{x^4}{y^3}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.