Xác định nghiệm nhỏ nhất của phương trình \[{\left( {x--3} \right)^2} + 3--x = 0\].
Xác định nghiệm nhỏ nhất của phương trình \[{\left( {x--3} \right)^2} + 3--x = 0\].
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp số: 3.
Ta có \[{\left( {x--3} \right)^2} + 3--x = 0\]
\[{\left( {x--3} \right)^2} - \left( {x - 3} \right) = 0\]
\[\left( {x--3} \right)\left( {x - 3 - 1} \right) = 0\]
\[\left( {x--3} \right)\left( {x - 4} \right) = 0\]
\[x--3 = 0\] hoặc \[x--4 = 0\]
\[x = 3\] hoặc \[x = 4\].
Do đó, phương trình có hai nghiệm là \[x = 3\]; \[x = 4\].
Vậy nghiệm nhỏ nhất của phương trình là \[x = 3\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 40.
Thay \[x = 2\,\,;{\rm{ }}y = 1\] vào đa thức \(A\), ta được:
\(7 \cdot {2^2} \cdot 1 - 4 \cdot {2^6} + 3 \cdot {1^2} \cdot 4 + 4 \cdot {2^6} = 40\).
Vậy giá trị của biểu thức \(C\) bằng 40.
Lời giải
Hướng dẫn giải
Đáp án: a) Đúng. b) Đúng. c) Sai. d) Sai.
⦁ Mỗi hộp quà có 5 mặt gồm 4 mặt bên và 1 mặt đáy. Do đó ý a) đúng.
⦁ Diện tích xung quanh của một hộp quà là: \({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 6} \right) \cdot 4 = 48{\rm{\;}}\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý b) đúng.
⦁ Diện tích các mặt của hộp quà là: Do đó ý c) sai.
⦁ Để làm 4 hộp quà bạn Uyên cần dùng diện tích giấy là: \(4 \cdot 84 = 336{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý d) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.