a) Thu gọn đơn thức \[A\] và tìm hệ số, bậc của nó: \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2}.\]
b) Cho hai đa thức: \[M = 2{x^2} - 2xy - {y^2};\,\,N = {x^2} + 2xy + {y^2} - 1.\] Tính giá trị của biểu thức \[M - N\] tại \[x = 1\,;\,\,y = - 2.\]
a) Thu gọn đơn thức \[A\] và tìm hệ số, bậc của nó: \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2}.\]
b) Cho hai đa thức: \[M = 2{x^2} - 2xy - {y^2};\,\,N = {x^2} + 2xy + {y^2} - 1.\] Tính giá trị của biểu thức \[M - N\] tại \[x = 1\,;\,\,y = - 2.\]
Quảng cáo
Trả lời:

a) Ta có \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2} = - \frac{3}{2}\left( {{x^2}{x^3}} \right)\left( {{y^4}{y^2}} \right) = - \frac{3}{2}{x^5}{y^6}\].
Đơn thức \[A\] có hệ số là \[ - \frac{3}{2}\]; bậc là 11.
b) Ta có \[M - N = \left( {2{x^2} - 2xy - {y^2}} \right) - \left( {{x^2} + 2xy + {y^2} - 1} \right)\]
\[ = 2{x^2} - 2xy - {y^2} - {x^2} - 2xy - {y^2} + 1\]
\[ = {x^2} - 4xy - 2{y^2} + 1\].
Thay \(x = 1\,;\,y = - 2\) vào đa thức \[M - N\], ta có
\[M - N = {1^2} - 4 \cdot 1 \cdot \left( { - 2} \right) - 2 \cdot {\left( { - 2} \right)^2} + 1 = 2\].
Vậy với \[x = 1\,;\,\,y = - 2\] thì \[M - N = 2.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có:
\[A = {a^2}\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {c^2}} \right)\] \( = \left( {{a^4} + {a^2}{b^2}} \right)\left( {{a^2} + {c^2}} \right)\) \( = {a^6} + {a^4}{c^2} + {a^4}{b^2} + {a^2}{b^2}{c^2}\) \( = {a^4}\left( {{a^2} + {c^2} + {b^2}} \right) + {a^2}{b^2}{c^2}\) \( = {a^4}.0 + {a^2}{b^2}{c^2}\) \( = {a^2}{b^2}{c^2}\). (1) |
\(B = {b^2}\left( {{b^2} + {c^2}} \right)\left( {{b^2} + {a^2}} \right)\) \( = \left( {{b^4} + {b^2}{c^2}} \right)\left( {{b^2} + {a^2}} \right)\) \( = {b^6} + {b^4}{a^2} + {b^4}{c^2} + {a^2}{b^2}{c^2}\) \( = {b^4}\left( {{b^2} + {a^2} + {c^2}} \right) + {a^2}{b^2}{c^2}\) \( = {b^4}.0 + {a^2}{b^2}{c^2}\) \( = {a^2}{b^2}{c^2}\). (2) |
\(C = {c^2}\left( {{c^2} + {a^2}} \right)\left( {{c^2} + {b^2}} \right)\) \( = \left( {{c^4} + {c^2}{a^2}} \right)\left( {{c^2} + {b^2}} \right)\) \( = {c^6} + {c^4}{b^2} + {c^4}{a^2} + {a^2}{b^2}{c^2}\) \( = {c^4}\left( {{c^2} + {b^2} + {a^2}} \right) + {a^2}{b^2}{c^2}\) \( = {c^4}.0 + {a^2}{b^2}{c^2}\) \( = {a^2}{b^2}{c^2}\). (3) |
Lời giải
b) Ta có \[B = {x^9} - {x^7} - {x^6} - {x^5} + {x^4} + {x^3} + {x^2} - 1\]
\( = \left( {{x^9} - {x^7}} \right) - \left( {{x^6} + {x^5}} \right) + \left( {{x^4} + {x^3}} \right) + \left( {{x^2} - 1} \right)\)
\( = {x^7}\left( {{x^2} - 1} \right) - {x^5}\left( {x + 1} \right) + {x^3}\left( {x + 1} \right) + \left( {x - 1} \right)\left( {x + 1} \right)\)
\( = {x^7}\left( {x - 1} \right)\left( {x + 1} \right) - {x^5}\left( {x + 1} \right) + {x^3}\left( {x + 1} \right) + \left( {x - 1} \right)\left( {x + 1} \right)\)
\( = \left( {x + 1} \right)\left[ {{x^7}\left( {x - 1} \right) - {x^5} + {x^3} + \left( {x - 1} \right)} \right]\)
\( = \left( {x + 1} \right)\left[ {\left( {x - 1} \right)\left( {{x^7} + 1} \right) - \left( {{x^5} - {x^3}} \right)} \right]\)
\( = \left( {x + 1} \right)\left[ {\left( {x - 1} \right)\left( {{x^7} + 1} \right) - {x^3}\left( {{x^2} - 1} \right)} \right]\)
\( = \left( {x + 1} \right)\left[ {\left( {x - 1} \right)\left( {{x^7} + 1} \right) - {x^3}\left( {x - 1} \right)\left( {x + 1} \right)} \right]\)
\( = \left( {x + 1} \right)\left( {x - 1} \right)\left[ {\left( {{x^7} + 1} \right) - {x^3}\left( {x + 1} \right)} \right]\)
\( = \left( {x + 1} \right)\left( {x - 1} \right)\left( {{x^7} + 1 - {x^4} - {x^3}} \right)\)
\( = \left( {x + 1} \right)\left( {x - 1} \right)\left[ {\left( {{x^7} - {x^4}} \right) - \left( {{x^3} - 1} \right)} \right]\)
\( = \left( {x + 1} \right)\left( {x - 1} \right)\left[ {{x^4}\left( {{x^3} - 1} \right) - \left( {{x^3} - 1} \right)} \right]\)
\( = \left( {x + 1} \right)\left( {x - 1} \right)\left( {{x^3} - 1} \right)\left( {{x^4} - 1} \right)\)
\( = \left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)\)
\( = \left( {x + 1} \right){\left( {x - 1} \right)^2}\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\)
\( = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {{x^2} + 1} \right)\left( {{x^2} + x + 1} \right)\).
Do đó \(B = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {{x^2} + 1} \right)\left( {{x^2} + x + 1} \right)\).
Thay \(x = 1\) vào \(B\) ta được \(B = {\left( {1 + 1} \right)^2}{\left( {1 - 1} \right)^3}\left( {{1^2} + 1} \right)\left( {{1^2} + 1 + 1} \right) = 0\).
Vậy \(B = 0\) tại \(x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.