Câu hỏi:

21/09/2025 29 Lưu

a) Thu gọn đơn thức \[A\] và tìm hệ số, bậc của nó: \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2}.\]

b) Cho hai đa thức: \[M = 2{x^2} - 2xy - {y^2};\,\,N = {x^2} + 2xy + {y^2} - 1.\] Tính giá trị của biểu thức \[M - N\] tại \[x = 1\,;\,\,y = - 2.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2} = - \frac{3}{2}\left( {{x^2}{x^3}} \right)\left( {{y^4}{y^2}} \right) = - \frac{3}{2}{x^5}{y^6}\].

Đơn thức \[A\]hệ số là \[ - \frac{3}{2}\]; bậc là 11.

b) Ta có \[M - N = \left( {2{x^2} - 2xy - {y^2}} \right) - \left( {{x^2} + 2xy + {y^2} - 1} \right)\]

\[ = 2{x^2} - 2xy - {y^2} - {x^2} - 2xy - {y^2} + 1\]

\[ = {x^2} - 4xy - 2{y^2} + 1\].

Thay \(x = 1\,;\,y = - 2\) vào đa thức \[M - N\], ta có

\[M - N = {1^2} - 4 \cdot 1 \cdot \left( { - 2} \right) - 2 \cdot {\left( { - 2} \right)^2} + 1 = 2\].

Vậy với \[x = 1\,;\,\,y = - 2\] thì \[M - N = 2.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) \(\frac{1}{2}xy\left( {{x^5} - {y^3}} \right) - {x^2}y\left( {\frac{1}{4}{x^4} - {y^3}} \right)\)

\( = \frac{1}{2}xy \cdot {x^5} - \frac{1}{2}xy \cdot {y^3} - {x^2}y \cdot \frac{1}{4}{x^4} + {x^2}y \cdot {y^3}\)

\( = \frac{1}{2}{x^6}y - \frac{1}{2}x{y^4} - \frac{1}{4}{x^6}y + {x^2}{y^4}\)

\( = \left( {\frac{1}{2}{x^6}y - \frac{1}{4}{x^6}y} \right) - \frac{1}{2}x{y^4} + {x^2}{y^4}\)

\[ = \frac{1}{4}{x^6}y - \frac{1}{2}x{y^4} + {x^2}{y^4}\]

Lời giải

b) \(\left( { - 9{x^2}{y^3} + 6{x^3}{y^2} - 4x{y^2}} \right):3x{y^2}\)

\( =  - 9{x^2}{y^3}:3x{y^2} + 6{x^3}{y^2}:3x{y^2} - 4x{y^2}:3x{y^2}\)

\( =  - 3xy + 2{x^2} - \frac{4}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP