Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: 4.
Ta có
\[ = {\left[ {\left( {3x + 1} \right) - \left( {3x - 1} \right)} \right]^2}\]
\[ = {\left( {3x + 1 - 3x + 1} \right)^2} = {2^2} = 4\].
Vậy giá trị của biểu thức \(A\) bằng 4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 2.
Ta có \(\frac{{x + 1}}{{x - 2}} + \frac{{x - 2}}{{x + 2}} + \frac{{x - 14}}{{{x^2} - 4}}\)
\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{{{\left( {x - 2} \right)}^2}}}{{x + 2}} + \frac{{x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right) + {{\left( {x - 2} \right)}^2} + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{{x^2} + 3x + 2 + {x^2} - 4x + 4 + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{2{x^2} - 8}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{2\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = 2.\]
Lời giải
Hướng dẫn giải
Đáp án: a) Đ. b) S. c) Đ. d) S.
⦁ Điều kiện xác định của biểu thức \(P\) là \(9 - {x^2} \ne 0,\) \(x + 3 \ne 0\) hay \[x \ne 3,\,\,x \ne - 3\].
Do đó ý a) là đúng.
⦁ Với \[x \ne 3,\,\,x \ne - 3\], ta có:
\[P = \frac{{{x^2} - 6x + 9}}{{9 - {x^2}}} + \frac{{4x + 8}}{{x + 3}}\]\[ = \frac{{{{\left( {x - 3} \right)}^2}}}{{\left( {3 - x} \right)\left( {x + 3} \right)}} + \frac{{4x + 8}}{{x + 3}}\]
\[ = \frac{{3 - x}}{{x + 3}} + \frac{{4x + 8}}{{x + 3}}\]\[ = \frac{{3 - x + 4x + 8}}{{x + 3}} = \frac{{3x + 11}}{{x + 3}}\].
Khi đó, với \[x \ne 3,\,\,x \ne - 3\] thì \[P = \frac{{3x + 11}}{{x + 3}}\].
Như vậy, biểu thức \(P\) sau khi rút gọn là phân thức có mẫu thức là \(x + 3.\) Do đó ý b) là sai.
⦁ Thay \(x = - 1\) vào \[P = \frac{{3x + 11}}{{x + 3}}\], ta được:
\[P = \frac{{3 \cdot \left( { - 1} \right) + 11}}{{\left( { - 1} \right) + 3}} = \frac{{ - 3 + 11}}{2} = 4.\]
Như vậy, \(P = 4\) tại \(x = - 1\). Do đó ý c) là đúng.
⦁ Ta có \(\left| {x + 2} \right| = 1\)
\(x + 2 = 1\) hoặc \(x + 2 = - 1\).
\(x = 1\) (TMĐK) hoặc \(x = - 3\) (loại vì \[x \ne - 3\]).
Thay \(x = 1\) vào biểu thức \(P,\) ta được: \(P = \frac{{3 \cdot 1 + 11}}{{1 + 3}} = \frac{{3 + 11}}{4} = \frac{7}{2}.\)
Khi đó, với \(\left| {x + 2} \right| = 1\) thì \(P = \frac{7}{2}\) nên với \(\left| {x + 2} \right| = 1\) thì chỉ có 1 giá trị của biểu thức \(P\).
Do đó ý d) là sai.
Vậy: a) Đ. b) S. c) Đ. d) S.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.