Câu hỏi:

22/09/2025 56 Lưu

Giá trị của biểu thức A=3x+12+3x1223x13x+1 bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 4.

Ta có A=3x+12+3x1223x13x+1

\[ = {\left[ {\left( {3x + 1} \right) - \left( {3x - 1} \right)} \right]^2}\]

\[ = {\left( {3x + 1 - 3x + 1} \right)^2} = {2^2} = 4\].

Vậy giá trị của biểu thức \(A\) bằng 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 2.

Ta có \(\frac{{x + 1}}{{x - 2}} + \frac{{x - 2}}{{x + 2}} + \frac{{x - 14}}{{{x^2} - 4}}\)

\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{{{\left( {x - 2} \right)}^2}}}{{x + 2}} + \frac{{x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]

\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right) + {{\left( {x - 2} \right)}^2} + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]

\[ = \frac{{{x^2} + 3x + 2 + {x^2} - 4x + 4 + x - 14}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]

\[ = \frac{{2{x^2} - 8}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{2\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = 2.\]

Lời giải

Hướng dẫn giải

Đáp án:           a) Đ.        b) S.        c) Đ.        d) S.

Điều kiện xác định của biểu thức \(P\)\(9 - {x^2} \ne 0,\) \(x + 3 \ne 0\) hay \[x \ne 3,\,\,x \ne - 3\].

Do đó ý a) là đúng.

Với \[x \ne 3,\,\,x \ne - 3\], ta có:

\[P = \frac{{{x^2} - 6x + 9}}{{9 - {x^2}}} + \frac{{4x + 8}}{{x + 3}}\]\[ = \frac{{{{\left( {x - 3} \right)}^2}}}{{\left( {3 - x} \right)\left( {x + 3} \right)}} + \frac{{4x + 8}}{{x + 3}}\]

\[ = \frac{{3 - x}}{{x + 3}} + \frac{{4x + 8}}{{x + 3}}\]\[ = \frac{{3 - x + 4x + 8}}{{x + 3}} = \frac{{3x + 11}}{{x + 3}}\].

Khi đó, với \[x \ne 3,\,\,x \ne - 3\] thì \[P = \frac{{3x + 11}}{{x + 3}}\].

Như vậy, biểu thức \(P\) sau khi rút gọn là phân thức có mẫu thức là \(x + 3.\) Do đó ý b) là sai.

Thay \(x = - 1\) vào \[P = \frac{{3x + 11}}{{x + 3}}\], ta được:

\[P = \frac{{3 \cdot \left( { - 1} \right) + 11}}{{\left( { - 1} \right) + 3}} = \frac{{ - 3 + 11}}{2} = 4.\]

Như vậy, \(P = 4\) tại \(x = - 1\). Do đó ý c) là đúng.

Ta có \(\left| {x + 2} \right| = 1\)

\(x + 2 = 1\) hoặc \(x + 2 = - 1\).

\(x = 1\) (TMĐK) hoặc \(x = - 3\) (loại vì \[x \ne - 3\]).

Thay \(x = 1\) vào biểu thức \(P,\) ta được: \(P = \frac{{3 \cdot 1 + 11}}{{1 + 3}} = \frac{{3 + 11}}{4} = \frac{7}{2}.\)

Khi đó, với \(\left| {x + 2} \right| = 1\) thì \(P = \frac{7}{2}\) nên với \(\left| {x + 2} \right| = 1\) thì chỉ có 1 giá trị của biểu thức \(P\).

Do đó ý d) là sai.

Vậy:                 a) Đ.        b) S.         c) Đ.        d) S.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP