Câu hỏi:

21/09/2025 100 Lưu

Cho biểu thức \[{x^3} + 6{x^2} + 12x + m\] là lập phương của một tổng. Tính giá trị của \(m\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp số: 8.

Ta có \[{x^3} + 6{x^2} + 12x + m = {x^3} + 3{x^2} \cdot 2 + 3x \cdot {2^2} + m\].

Để biểu thức trên là lập phương của một tổng thì \(m = {2^3} = 8\).

Khi đó, \[{x^3} + 6{x^2} + 12x + 8 = {x^3} + 3{x^2} \cdot 2 + 3x \cdot {2^2} + {2^3} = {\left( {x + 2} \right)^3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 30.

Xét tứ giác \(ABCD\) có \(\widehat {BAD} + \widehat B + \widehat {BCD} + \widehat D = 360^\circ \).

Suy ra \(\frac{{7x}}{2} + 4x + 135^\circ = 360^\circ \) hay \(\frac{{15x}}{2} = 225^\circ \) nên \(x = 30^\circ .\)

Lời giải

Hướng dẫn giải

Đáp án: 6.

Ta có \[\left( {5{x^5}{y^4}z + \frac{1}{2}{x^4}{y^2}{z^3} - 2x{y^3}{z^2}} \right):\frac{1}{4}x{y^2}z\]

\[ = 5{x^5}{y^4}z:\frac{1}{4}x{y^2}z + \frac{1}{2}{x^4}{y^2}{z^3}:\frac{1}{4}x{y^2}z - 2x{y^3}{z^2}:\frac{1}{4}x{y^2}z\]

\[ = 20{x^4}{y^2} + 2{x^3}{z^2} - 8yz\].

 Đa thức \[20{x^4}{y^2} + 2{x^3}{z^2} - 8yz\] có bậc 6 nên bậc của đa thức cần tìm có bậc là 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP