Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 12

Ta có \(\widehat {ABD}\)\(\widehat {DBC}\) là hai góc kề bù nên ta có: \(\widehat {ABD} + \widehat {DBC} = 180^\circ \)

Hay \(3x + 14^\circ + 12x - 14^\circ = 180^\circ \) suy ra \(15x = 180^\circ \), do đó \(x = 180^\circ :15 = 12\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: a) Đúng   b) Sai             c) Đúng             d) Sai

• Nhận thấy \(\widehat {ABD}\)\(\widehat {DBx'}\) là hai góc kề bù. Do đó, ý a) là đúng.

• Ta có \(\widehat {ABD} + \widehat {DBx'} = 180^\circ \) hay \(\widehat {ABD} + 75^\circ = 180^\circ \) nên \(\widehat {ABD} = 180^\circ - 75^\circ = 105^\circ \). Do đó, ý b) là sai.

• Ta có: \(\widehat {mAB} = \widehat {ACB} = 60^\circ \) (giả thiết)

Mà hai góc ở vị trí đồng vị nên \(xx'\parallel yy'\). Do đó, ý c) là đúng.

• Vì \(xx'\parallel yy'\) nên \(\widehat {CDt} = \widehat {ABD} = 105^\circ \) (hai góc đồng vị). Do đó, ý d) là sai.

Lời giải

Đáp án: 145

\(ts\parallel mn\) nên \(\widehat {sAn} = \widehat {nBy} = 35^\circ \) (đồng vị)

Lại có \(\widehat {nBy}\)\(\widehat {mBy}\) là hai góc kề bù nên \(\widehat {mBy} + \widehat {nBy} = 180^\circ \)

nên \(\widehat {mBy} = 180^\circ - \widehat {nBy} = 180^\circ - 35^\circ = 145^\circ \).