Câu hỏi:

23/09/2025 165 Lưu

Cho hình vẽ dưới đây.

Xét tính đúng, sai của các mệnh đề dưới đây. (ảnh 1)

Xét tính đúng, sai của các mệnh đề dưới đây.

        a) \[\widehat {DBA}\] là góc ngoài tại đỉnh \[B\] của tam giác \[ABC\].

        b) Tam giác \[ABC\] là tam giác vuông tại \[B.\]

        c) \[\widehat {DBA} = \widehat C + \widehat A\].

        d) \[BE\parallel AC\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đ                             b) S         c) Đ           d) Đ

Nhận thấy \[\widehat {DBA}\]\[\widehat {CBA}\] là hai góc kề bù. Do đó, \[\widehat {DBA}\] là góc ngoài tại đỉnh \[B\] của tam giác \[ABC.\]Vậy ý a) là đúng.

• Xét tam giác \[ABC\] có: \[\widehat A + \widehat B + \widehat C = 180^\circ \] (tổng ba góc trong tam giác)

Do đó, \[\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right)\] hay \[\widehat B = 180^\circ - \left( {60^\circ + 60^\circ } \right) = 60^\circ \]. Do đó, tam giác \[ABC\] là tam giác đều.

Vậy ý b) là sai.

• Vì \[\widehat {DBA}\] là góc ngoài tại đỉnh \[B\] của tam giác \[ABC\] nên ta có \[\widehat {DBA} = \widehat C + \widehat A\].

Vậy ý c) là đúng.

• Có \[\widehat {DBA} = \widehat C + \widehat A = 60^\circ + 60^\circ = 120^\circ \].

Nhận thấy \[BE\] là phân giác của \[\widehat {DBA}\] nên \[\widehat {DBE} = \widehat {EBA} = \frac{{\widehat {DBA}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \].

Do đó, \[\widehat {EBA} = \widehat {BAC} = 60^\circ \].

Mà hai góc ở vị trí so le trong nên \[BE\parallel AC\].

Vậy ý d) là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đ                             b) Đ                         c) S                              d) Đ

Cho tam giác \[ABC\] có \[AB = AC\]. Gọi \[M\] là trung điểm của \[BC\]. Trên tia đối của tia \[MA\] lấy điểm \[D\] sao cho \[MD = MA\]. 	a) \[\Delta AMB = \Delta AMC\]. 	b) \[AM\] là tia phân  (ảnh 1)

• Xét \[\Delta AMB\]\[\Delta AMC\], có:

\[AB = AC\] (gt)

\[MB = MC\] (gt)

\[AM\] chung (gt)

Do đó, \[\Delta AMB = \Delta AMC\] (c.c.c)

Vậy ý a) là đúng.

• Vì \[\Delta AMB = \Delta AMC\] (cmt) nên \[\widehat {MAB} = \widehat {MAC}\] (hai góc tương ứng).

Lại có tia \[AM\] nằm giữa hai tia \[AB,AC\] nên \[AM\] là tia phân giác của \[\widehat {BAC}\]. Do đó, ý b) là đúng.

• Xét \[\Delta ABM\]\[\Delta DMC\], có:

\[AM = MD\] (gt)

\[MB = MC\] (gt)

\[\widehat {AMB} = \widehat {DMC}\] (đối đỉnh)

Do đó, \[\Delta ABM = \Delta DCM\] (c.g.c) .

Vậy ý c) là sai.

• Vì \[\Delta ABM = \Delta DCM\] (cmt) nên \[\widehat {ABM} = \widehat {DCM}\] (hai góc tương ứng).

Mà hai góc nằm ở vị trí so le trong nên \[AB\parallel DC\]. Do đó, ý d) là đúng.

Lời giải

Hướng dẫn giải

Đáp án: 122

Độ dài đường chéo của chiếc ti vi này là: \[48 \cdot 2,54 = 121,91{\rm{ }}\left( {{\rm{cm}}} \right)\].

Độ dài đường chéo của chiếc ti vi này khi làm tròn với độ chính xác \[d = 0,5\]\[122\] cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP