Câu hỏi:

23/09/2025 34 Lưu

Trong hình vẽ dưới, phần mặt phẳng không bị gạch sọc (kể cả biên) là miền nghiệm của hệ bất phương trình nào dưới đây?

Trong hình vẽ dưới, phần mặt phẳng không bị gạch sọc (kể cả biên) là miền nghiệm của hệ bất phương trình nào dưới đây? (ảnh 1)

A. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \ge - 2\end{array} \right.\).                                                                   
B. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \ge - 2\end{array} \right.\).                                      
C. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \le - 2\end{array} \right.\).                                                                   
D. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \le - 2\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta chọn điểm (−1; 1) thuộc miền nghiệm của hệ bất phương trình thay vào lần lượt các phương trình đường thẳng ta được:

\(\left\{ \begin{array}{l} - 1 - 2.1 = - 3 < 0\\ - 1 + 3.1 + 2 = 4 > 0\end{array} \right.\).

Suy ra hệ bất phương trình là \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \ge - 2\end{array} \right.\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ \begin{array}{l}x + y - 1 \ge 0\\2x - y + 4 \le 0\end{array} \right.\).                                                                  

B. \(\left\{ \begin{array}{l}x + y - 1 \ge 0\\2x - y + 4 \ge 0\end{array} \right.\).                                    
C. \(\left\{ \begin{array}{l}x + y - 1 \le 0\\2x - y + 4 \ge 0\end{array} \right.\).                                                                   
D. \(\left\{ \begin{array}{l}x + y - 1 \le 0\\2x - y + 4 \le 0\end{array} \right.\).

Lời giải

Đường thẳng d1 đi qua điểm (1; 0) và (0; 1) có phương trình là \(x + y - 1 = 0\).

Vì O(0; 0) không thuộc d1 thuộc vào miền nghiệm nên thay (0; 0) vào d1 ta có \( - 1 < 0\).

Suy ra \(x + y - 1 \le 0\).

Đường thẳng d2 đi qua điểm (−2; 0) và (0; 4) có phương trình \(2x - y + 4 = 0\).

Vì O(0; 0) không thuộc d2 thuộc miền nghiệm nên thay (0; 0) vào d2 ta có 4 > 0.

Suy ra \(2x - y + 4 \ge 0\).

Vậy miền không bị gạch chéo là miền nghiệm của bất phương trình \(\left\{ \begin{array}{l}x + y - 1 \le 0\\2x - y + 4 \ge 0\end{array} \right.\). Chọn C.

Lời giải

Gọi số xe lớn và số xe nhỏ mà chủ trang trại cần thuê lần lượt là \(x;y\left( {x,y \in \mathbb{N}} \right)\).

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}15x + 12y \ge 120\\5x + 2y \ge 30\\0 \le x \le 9\\0 \le y \le 10\end{array} \right.\)5x+4y405x+2y300x90y10

Miền nghiệm của hệ bất phương trình là miền trong của ngũ giác ABCDE (kể cả bờ) với \(A\left( {2;10} \right),B\left( {9;10} \right),C\left( {9;0} \right),D\left( {8;0} \right),E\left( {4;5} \right)\).

. Hỏi chủ trang trại cần thuê xe với chi phí thấp nhất là bao nhiêu nghìn đồng? (ảnh 1)

Theo đề bài ta có biểu thức biểu thị số tiền thuê xe là \(F = 500x + 350y\)(nghìn đồng).

Với A(2; 10) thì F = 4500;

Với B(9; 10) thì F = 8000;

Với C(9; 0) thì F = 4500;

Với D(8; 0) thì F = 4000;

Với E(4; 5) thì F = 3750.

Vậy số tiền thuê thấp nhất để chở 120 con bò sữa và 30 tấn thức ăn cho bò là 3750000 đồng khi thuê 4 xe lớn và 5 xe nhỏ.

Trả lời: 3750.

Câu 3

A. \(11\).                                 
B. \( - 1\).                               
C. \( - 5\).                               
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left\{ \begin{array}{l}2x - y - 2 < 0\\x + y < 2\\6x - y + 2 > 0\end{array} \right.\).                                                        

B. \(\left\{ \begin{array}{l}2x - y - 2 < 0\\x + y < 2\\6x - y + 2 < 0\end{array} \right.\).                     
C. \(\left\{ \begin{array}{l}2x - y - 2 > 0\\x + 2y < 2\\6x - y + 2 > 0\end{array} \right.\).                                                         
D. \(\left\{ \begin{array}{l}2x - y - 2 > 0\\x + y > 2\\x - y + 2 > 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(A\left( {0;7} \right)\).                                      
B.\(B\left( {2;3} \right)\).                                 
C.\(C\left( {2; - 3} \right)\).  
D. \(Q\left( { - 1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP