Nhân dịp tết Trung thu, xí nghiệp sản xuất bánh muốn sản xuất hai loại bánh: bánh nướng và bánh dẻo. Để sản xuất hai loại bánh này, xí nghiệp cần: đường, bột mì, trứng, mứt bí, lạp xưởng,... Xí nghiệp đã nhập về \(600\;kg\) bột mì và \(240\;kg\) đường, các nguyên liệu khác luôn đáp ứng được số lượng mà xí nghiệp cần. Mỗi chiếc bánh nướng cần \(120\;g\) bột mì, \(60\;g\) đường. Mỗi chiếc bánh dẻo cần \(160\;g\) bột mì và \(40\;g\) đường. Theo khảo sát thị trường, lượng bánh dẻo tiêu thụ không vượt quá ba lần lượng bánh nướng và sản phẩm của xí nghiệp sản xuất luôn được tiêu thụ hết. Mỗi chiếc bánh nướng lãi 8000 đồng, mỗi chiếc bánh dẻo lãi 6000 đồng, Hãy lập kế hoạch sản xuất cho xí nghiệp để đáp ứng nhu cầu thị trường; đảm bảo lượng bột mì, đường không vượt quá số lượng mà xí nghiệp đã chuẩn bị và vẫn thu được lợi nhuận cao nhất.
Nhân dịp tết Trung thu, xí nghiệp sản xuất bánh muốn sản xuất hai loại bánh: bánh nướng và bánh dẻo. Để sản xuất hai loại bánh này, xí nghiệp cần: đường, bột mì, trứng, mứt bí, lạp xưởng,... Xí nghiệp đã nhập về \(600\;kg\) bột mì và \(240\;kg\) đường, các nguyên liệu khác luôn đáp ứng được số lượng mà xí nghiệp cần. Mỗi chiếc bánh nướng cần \(120\;g\) bột mì, \(60\;g\) đường. Mỗi chiếc bánh dẻo cần \(160\;g\) bột mì và \(40\;g\) đường. Theo khảo sát thị trường, lượng bánh dẻo tiêu thụ không vượt quá ba lần lượng bánh nướng và sản phẩm của xí nghiệp sản xuất luôn được tiêu thụ hết. Mỗi chiếc bánh nướng lãi 8000 đồng, mỗi chiếc bánh dẻo lãi 6000 đồng, Hãy lập kế hoạch sản xuất cho xí nghiệp để đáp ứng nhu cầu thị trường; đảm bảo lượng bột mì, đường không vượt quá số lượng mà xí nghiệp đã chuẩn bị và vẫn thu được lợi nhuận cao nhất.
Quảng cáo
Trả lời:

Gọi \(x,y\) (chiếc) là số lượng bánh nướng, bánh dẻo mà xí nghiệp cần sản xuất. Trong đó \(0 < x,0 < y\) với \(x,y \in {\mathbb{N}^*}\).
Khối lượng bột mỳ cần dùng là: \(0,12x + 0,16y(\;kg)\).
Khối lượng đường cần dùng là: \(0,06x + 0,04y(\;kg)\).
Ta có: \(0,12x + 0,16y \le 600\) hay \(3x + 4y \le 15000\);
\(0,06x + 0,04y \le 240\) hay \(3x + 2y \le 12000\).
Số tiền lãi thu được là: \(T = 8x + 6y\) (nghìn đồng). Bài toán đưa về, tìm \(x,y\) là nghiệm của hệ bất phương trình: \(\left\{ \begin{array}{l}3x + 4y \le 15000\\3x + 2y \le 1200\\y \le 3x\\x \ge 0\\y \ge 0\end{array} \right.\left( V \right)\) để \(T = 8x + 6y\) đạt giá trị lớn nhất.
Trước hết, ta biểu diễn miền nghiệm của hệ bất phương trình (V).
Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\) với \(O\left( {0;0} \right),\,A\left( {4000;0} \right),B\left( {3000;1500} \right),\,C\left( {1000;3000} \right)\)
Tính giá trị của \(T\) tại các cặp số \((x;y)\) là toạ độ các đỉnh trên rồi so sánh các giá trị đó, ta được \(T\) đạt giá trị lớn nhất bằng 33000 (nghìn đồng) hay 33 triệu đồng tại \(x = 3000;y = 1500\).
Vậy để đạt được tiền lãi cao nhất, xí nghiệp nên sản xuất 3000 chiếc bánh nướng và \(1.500\) chiếc bánh dẻo.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Miền nghiệm của hệ bất phương trình (II) là miền tam giác \(ABC\) với \(A(4;1)\), \(B(8;3),C(2;3)\) (Hình).
Ta có: \(2x - 5y + m \ge 0 \Leftrightarrow m \ge - 2x + 5y\).
Đặt \(F = - 2x + 5y\). Tính giá trị của \(F = - 2x + 5y\) tại các cặp số \((x;y)\) là toạ độ của các đỉnh tam giác \(ABC\) rồi so sánh các giá trị đó, ta được \(F\) đạt giá trị lớn nhất bằng 11 tại \(x = 2,y = 3\).
Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi \(x,y\) thoả mãn hệ bất phương trình đã cho thì \(m \ge {\mathop{\rm Max}\nolimits} F\) trên miền nghiệm của hệ bất phương trình đó hay \(m \ge 11\).
Lời giải
Gọi \(x,y\) lần lượt là số ki-lô-gam thịt bò và thịt lợn mà gia đình đó mua trong một ngày với \(0 \le x \le 1,6,0 \le y \le 1,1\).
Số đơn vị protein gia đình có là: \(800x + 600y\).
Số đơn vị lipit gia đình có là: \(200x + 400y\). Theo bài ra, ta có:
\(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}0 \le x \le 1,6\\0 \le y \le 1,1\\800x + 600y \ge 900\\200x + 400y \ge 400\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}0 \le x \le 1,6\\0 \le y \le 1,1\\8x + 6y \ge 9\\x + 2y \ge 2\end{array}\end{array}} \right.} \right.\left( {IV} \right)\)
Số tiền gia đình đã dùng để mua thịt bò và thịt lợn là:
\[T = 200000{\rm{ }}x + 160000{\rm{ }}y\](đồng).
Bài toán đưa về tìm \(x,y\) là nghiệm của hệ bất phương trình (IV) để \(T = 200000x + 160000y\) đạt giá trị nhỏ nhất.
Trước hết, ta biểu diễn miền nghiệm của hệ bất phương trình (IV).
Miền nghiệm của hệ bất phương trình (IV) là miền tứ giác \(ABCD\) với \(A(0,3;1,1),B(0,6;0,7),C(1,6;0,2)\), \(D(1,6;1,1)\)(hình)
Tính giá trị của \(T\) tại các cặp số \((x;y)\) là tọa độ của các đỉnh tứ giác \(ABCD\) rồi so sánh các giá trị đó, ta được \(T\) đạt giá trị nhỏ nhất bằng 232000 đồng tại \(x = 0,6;y = 0,7\)
Vậy để đảm bảo cung cấp đủ lượng protein, lipit cho gia đình và có chi phí là ít nhất thì gia đình đó cần mua thêm \(0,6kg\) thịt bò và \(0,7kg\)thịt lợn
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.