Tìm hiểu thời gian sử dụng điện thoại trong tuần đầu tháng 6/2024 của kỳ nghỉ hè lớp chủ nhiệm. GVCN thu được kết quả sau:

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là \(25\).
(b) Nhóm chứa tứ phân vị thứ 3 là \(\left[ {15;20} \right)\).
(c) Số trung bình của thống kê là \(10\).
(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm này lớn hơn \(10\).
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:

a) Sai. Khoảng biến thiên của mẫu số liệu ghép nhóm là \(R = 30 - 0 = 30\).
b) Đúng. Vì \(16 < \frac{{3n}}{4} = \frac{{3.30}}{4} = \frac{{90}}{4} = 22,5 < 25\) nên nhóm chứa tứ phân vị thứ 3 là \(\left[ {15;20} \right)\).
c) Sai. Thời gian sử dụng điện thoại trung bình của học sinh là
\(\overline x = \frac{{2.2,5 + 6.7,5 + 8.12,5 + 9.17,5 + 3.22,5 + 2.27,5}}{{30}} = \frac{{43}}{3} \approx 14,3\).
d) Sai. Ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
\({Q_1} = 5 + \frac{{\frac{{30}}{4} - 2}}{6}.5 = 9,58;{Q_3} = 15 + \frac{{\frac{{90}}{4} - 16}}{9}.5 = \frac{{335}}{{18}} \approx 18,61 \Rightarrow {\Delta _Q} = {Q_3} - {Q_1} = \frac{{325}}{{36}} \approx 9,03 < 10\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(11\).
\(10,95\).
\(10,94\).
\(10,96\).
Lời giải
Đáp án đúng: B
Trọng lượng trung bình của một củ khoai là: \(\overline x = \frac{{75.3 + 85.6 + 95.12 + 105.6 + 115.3}}{{30}} = 95\).
Phương sai là \({S^2} = \frac{{{{75}^2}.3 + {{85}^2}.6 + {{95}^2}.12 + {{105}^2}.6 + {{115}^2}.3}}{{30}} - {95^2} = 120\).
Độ lệch chuẩn là: \(S = \sqrt {{S^2}} = \sqrt {120} \approx 10,95\).
Câu 2
Độ lệch chuẩn của mẫu lớn hơn \[2\].
Số trung bình của mẫu số liệu gần bằng với \[20,77\].
Độ dày của chi tiết máy không bị sai lệch nhiều.
Cỡ mẫu của mẫu số liệu là 60.
Lời giải
Đáp án đúng: A
Ta có cỡ mẫu \(n = 60\).
Số trung bình của mẫu số liệu là\[\bar x = \frac{{3.18,5 + 7.19,5 + 23.20,5 + 25.21,5 + 2.22,5}}{{60}} = \frac{{623}}{{30}} \approx 20,77.\]
Phương sai của mẫu số liệu là
\({S^2} = \frac{1}{{60}}\left( {3 \cdot 18,{5^2} + 7 \cdot 19,{5^2} + 23 \cdot 20,{5^2} + 25 \cdot 21,{5^2} + 2 \cdot 22,{5^2}} \right) - {\left( {\frac{{623}}{{30}}} \right)^2} = \frac{{179}}{{225}}\).
Độ lệch chuẩn của mẫu số liệu là \({S^2} = \sqrt {\frac{{179}}{{225}}} = \frac{{\sqrt {179} }}{{15}} \approx 0,89\).
Câu 3
\([2;3,5)\).
\([3,5;5)\).
\([5;6,5)\).
\([6,5;8)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
15.
25.
37.
20.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\left( {17;19} \right)\).
\(\left( {20;21} \right)\).
\(\left( {19;20} \right)\).
\(\left( {23;25} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





