Câu hỏi:

17/10/2025 72 Lưu

Phần II. Trắc nghiệm đúng, sai

(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))

Một bể kính hình hộp chữ nhật có hai cạnh đáy là \(60{\rm{ cm}}\)\(30{\rm{ cm}}{\rm{.}}\) Trong bể có một khối đá hình chóp tam giác đều với diện tích đáy là \(270{\rm{ c}}{{\rm{m}}^2}\), chiều cao \(30{\rm{ cm}}{\rm{.}}\) Người ta đổ nước vào bể sao cho nước ngập khối đá và đo được mức nước là \(60{\rm{ cm}}{\rm{.}}\)

 (Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))  Một bể kính hình hộp chữ nhật có hai cạnh đáy là \(60{\r (ảnh 1)

Khi đó,

          a) Thể tích khối chóp tam giác đều là \(2{\rm{ }}700{\rm{ c}}{{\rm{m}}^3}.\)

          b) Thể tích lượng nước đổ vào là \(108{\rm{ 000}}\,\,{\rm{c}}{{\rm{m}}^3}.\)

          c) Diện tích đáy của bể là \(180{\rm{ c}}{{\rm{m}}^{\rm{2}}}.\)

          d) Khi khối đá được lấy ra thì mực nước của bể lớn hơn 58 m.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Thể tích khối đá hình chóp tam giác đều là: \(V = \frac{1}{3}S.h = \frac{1}{3}.270.30 = 2{\rm{ }}700{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)

b) Đúng.

Thể tích khối nước là: \(V = 60.30.60 = 108{\rm{ }}000{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)

Do đó, thể tích nước còn lại là: \(108{\rm{ }}000 - 2{\rm{ }}700 = 105{\rm{ }}300{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)

c) Sai.

Diện tích đáy của bể hình hộp chữ nhật là: \(60.30 = 1{\rm{ }}800{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

d) Đúng.

Khi khối đá được lấy ra thì mực nước của bể là: \(105{\rm{ 300: 1 800}} = 58,5{\rm{ }}\left( {{\rm{cm}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.

Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\) Gọi đường cao của mặt đáy là \(CH\), ta có \(CH\) đồng thời là đường trung tuyến.

\(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)

b) Đúng.

Xét tam giác \(BHC\) vuông tại \(H\). Theo định lý Pythagore ta có: \(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\) suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

c) Sai.

\(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Xét tam giác \(SHG\) vuông tại \(G\). Theo định lý Pythagore, ta có:

\(S{H^2} = S{G^2} + H{G^2}\)

\(S{H^2} = {90^2} + {30^2} = 9000\)

Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\)

d) Đúng.

Vậy diện tích xung quanh của hình chóp là \(S = 3 \cdot \frac{1}{2} \cdot 60 \cdot 30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Lời giải

Đáp án: 520

Các mặt bên và mặt đáy của hình chóp \(S.ABC\) là những tam giác đều cạnh \(20{\rm{ cm}}{\rm{.}}\)

Xét tam giác đều \(SAB\) có đường cao \(SH\) đồng thời là đường trung tuyến, ta có:

\(AH = BH = \frac{{AB}}{2} = 10{\rm{ cm}}\).

Xét tam giác \(SHB\) vuông tại \(H\). Theo định lí Pythagore, ta có:

\(S{B^2} = S{H^2} + B{H^2}\) hay \({20^2} = S{H^2} + {10^2}\) suy ra \(S{H^2} = S{B^2} - B{H^2} = 300\).

Suy ra \(SH = \sqrt {300} \approx 17,32{\rm{ }}\left( {{\rm{cm}}} \right)\).

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = 3 \cdot \frac{1}{2} \cdot 30 \cdot 17,32 = 519,6 \approx 520{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Câu 3

A. Nửa chu vi đáy nhân với đường cao.           
B. Chu vi đáy nhân với trung đoạn.          
C. Nửa chu vi đáy nhân với trung đoạn.            
D. Chu vi đáy nhân với chiều cao.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 4 mặt, 4 cạnh.         
B. 6 mặt, 4 cạnh.          
C. 4 mặt, 6 cạnh. 
D. 6 mặt, 6 cạnh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP