Chiều cao so với mực nước biển trung bình tại các thời điểm \[t\] (giây) của mỗi cơn sóng được cho bởi hàm số \[h\left( t \right) = 75\sin \left( {\frac{{\pi t}}{8}} \right)\], trong đó \[h\left( t \right)\] được tính bằng centimét. (Tất cả các kết quả được làm tròn đến hàng phần mười).
a) Chiều cao của sóng tại thời điểm 5 giây bằng \[69,3{\rm{ }}\left( {cm} \right)\].
b) Chiều cao của sóng tại thời điểm 20 giây bằng \[{\rm{75 }}\left( {cm} \right)\].
c) Trong 30 giây đầu tiên (kể từ mốc \[t = 0\] giây), thời điểm để sóng đạt chiều cao lớn nhất là 6 giây.
d) Trong 30 giây đầu tiên (kể từ mốc \[t = 0\] giây), thời điểm để sóng đạt chiều cao lớn nhất là 18 giây.
Chiều cao so với mực nước biển trung bình tại các thời điểm \[t\] (giây) của mỗi cơn sóng được cho bởi hàm số \[h\left( t \right) = 75\sin \left( {\frac{{\pi t}}{8}} \right)\], trong đó \[h\left( t \right)\] được tính bằng centimét. (Tất cả các kết quả được làm tròn đến hàng phần mười).
a) Chiều cao của sóng tại thời điểm 5 giây bằng \[69,3{\rm{ }}\left( {cm} \right)\].
b) Chiều cao của sóng tại thời điểm 20 giây bằng \[{\rm{75 }}\left( {cm} \right)\].
c) Trong 30 giây đầu tiên (kể từ mốc \[t = 0\] giây), thời điểm để sóng đạt chiều cao lớn nhất là 6 giây.
d) Trong 30 giây đầu tiên (kể từ mốc \[t = 0\] giây), thời điểm để sóng đạt chiều cao lớn nhất là 18 giây.
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Đ |
b) Đ |
c) S |
d) S |
Chiều cao của sóng tại thời điểm 5 giây là \[h\left( 5 \right) = 75\sin \left( {\frac{{\pi .5}}{8}} \right) \approx 69,3{\rm{ }}\left( {cm} \right).\]
Chiều cao của sóng tại thời điểm 20 giây là \[h\left( {20} \right) = 75\sin \left( {\frac{{\pi .20}}{8}} \right) = 75{\rm{ }}\left( {cm} \right).\]
Ta thấy \[ - 75 \le 75\sin \left( {\frac{{\pi t}}{8}} \right) \le 75\].
Sóng đạt chiều cao lớn nhất là \[75{\rm{ }}\left( m \right)\] khi \[\sin \left( {\frac{{\pi t}}{8}} \right) = 1\]\[ \Leftrightarrow \frac{{\pi t}}{8} = \frac{\pi }{2} + k2\pi \]\[ \Leftrightarrow t = 4 + 16k.\]
Có \[0 \le t = 4 + 16k \le 30\]\[ \Leftrightarrow - \frac{1}{4} \le k \le \frac{{26}}{{16}}\].
Mà \[k \in \mathbb{Z}\] nên \[k \in \left\{ {0;1} \right\}\] do đó \[t = 4\] giây và \[t = 20\] giây
Trong 30 giây đầu tiên (kể từ mốc \[t = 0\] giây), thời điểm để sóng đạt chiều cao lớn nhất là 4 giây và 20 giây.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) S |
b) Đ |
c) S |
d) Đ |
Gọi \[r\] là lãi suất gửi theo năm, khi đó \[r = 7\% = 0,07\].
Sau năm thứ nhất, số tiền ông Minh nhận được là:
\[100 + 100.0,07 = 100\left( {1 + 0,07} \right) = 107\](triệu đồng).
Sau năm thứ hai, số tiền ông Minh nhận được là:
\[107 + 107.1,07\]\[ = 100.\left( {1 + 0,07} \right) + 100\left( {1 + 0,07} \right).0,07\]
\[ = 100{\left( {1 + 0,07} \right)^2}\]\[ = 114,49\] (triệu đồng).
Theo quy luật đó, ta thấy số tiền mà ông Minh nhận được sau \[n\] năm là số hạng thứ \[n\] của một cấp số nhân có số hạng đầu \[{u_1} = 107\] và công bội \[q = 1,07\].
Vậy số tiền mà ông Minh nhận được sau 10 năm là: \[107.1,{07^9} \approx 196,72\] (triệu đồng).
Lời giải
Hướng dẫn giải
Đáp án đúng là: 0,5
Gọi \[O = AC \cap BD\], \[I = AM \cap SO\]. Trong mặt phẳng \[\left( {SBD} \right)\], kéo dài \[GI\] cắt \[SD\] tại \[K\]. Suy ra \[K = SD \cap \left( {AMG} \right)\]. Trong tam giác \[SAC\], có \[SO,AM\] là hai đường trung tuyến nên \[I\] là trọng tâm tam giác \[SAC\]. Suy ra \[\frac{{OI}}{{OS}} = \frac{1}{3}\]. Ta lại có \[\frac{{OG}}{{OB}} = \frac{1}{3}\]. \[ \Rightarrow \frac{{OI}}{{OS}} = \frac{{OG}}{{OB}} = \frac{1}{3}\] \[ \Rightarrow GI\parallel SB\] \[ \Rightarrow GK\parallel SB\]\[ \Rightarrow \frac{{KD}}{{KS}} = \frac{{GD}}{{GB}}.\] Ta có: \[DO = BO = 3GO\]\[ \Rightarrow GD = 4GO;GB = 2GO.\] Vậy \[\frac{{KD}}{{KS}} = \frac{{GD}}{{GB}} = \frac{{4GO}}{{2GO}} = 2\]\[ \Rightarrow \frac{{KS}}{{KD}} = \frac{1}{2} = 0,5.\] |
![]() |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.