Câu hỏi:

19/10/2025 11 Lưu

Một quả bóng đang bay ngang với động lượng \({\rm{\vec p}}\) thì đập vuông góc vào một bức tường thẳng đứng, bay ngược trở lại theo phương vuông góc với bức tường với cùng độ lớn vận tốc. Độ biến thiên động lượng của quả bóng là

\(\vec 0\).

\({\rm{\vec p}}\).

\(2{\rm{\vec p}}\).

\( - 2{\rm{\vec p}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng: D

2023_08_20_20fec068dd50928d5b8ag-074.jpeg

Có thể mô tả chuyển động của quả bóng trước và sau khi đập vào tường như hình vẽ: Vận tốc của quả

bóng trước và sau khi đập vào tường là cùng phương, ngược chiều và cùng độ lớn, do đó ta có thể viết \({{\rm{\vec v}}^{\rm{'}}} = - {\rm{\vec v}} \Leftrightarrow {{\rm{\vec p}}^{\rm{'}}} = - {\rm{\vec p}}\).

Động lượng của quả bóng trước khi đập vào tường là: \({\rm{\vec p}} = {\rm{m\vec v}}\).

Động lượng của quả bóng khi bay ngược trở lại là: \({{\rm{\vec p}}^{\rm{'}}} = {\rm{m}}{\rm{.}}{{\rm{\vec v}}^{\rm{'}}}\).

Vận tốc của quả bóng trước và sau khi đập vào tường là cùng phương, ngược chiều và cùng độ lớn nên \({{\rm{\vec v}}^{\rm{'}}} = - {\rm{\vec v}} \Leftrightarrow {{\rm{\vec p}}^{\rm{'}}} = - {\rm{\vec p}}\).

Độ biến thiên động lượng của quả bóng: \({\rm{\Delta \vec p}} = {{\rm{\vec p}}^{\rm{'}}} - {\rm{\vec p}} = - {\rm{\vec p}} - {\rm{\vec p}} = - 2{\rm{\vec p}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ

b) Đ

c) Khi vật chuyển động trên mặt phẳn nghiêng, trọng lực làm thay đổi động lượng nên không thể là hệ kín => S.

d) Trong chuyển động tròn đều \(\overrightarrow v \) đổi hướng nên \(\overrightarrow p \) không bảo toàn hướng => S.

Câu 2

độ lớn là \(115{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).

độ lớn là \(115{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{B}}\) đến \({\rm{A}}\).

độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).

độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{B}}\) đến \({\rm{A}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng: C

Shape1

Động lượng của vật \({{\rm{m}}_1}\) có độ lớn là: \({{\rm{p}}_1} = {{\rm{m}}_1}{{\rm{v}}_1} = 5.\frac{{54}}{{3,6}} = 75{\rm{\;kg}}{\rm{.m/s}}\).

Động lượng của vật \({{\rm{m}}_2}\) có độ lớn là: \({{\rm{p}}_2} = {{\rm{m}}_2}{{\rm{v}}_2} = 4.\frac{{36}}{{3,6}} = 40{\rm{\;kg}}{\rm{.m/s}}\).

Động lượng của hệ hai vật \({{\rm{m}}_1}\) và \({{\rm{m}}_2}\) là: \({\rm{\vec p}} = {{\rm{\vec p}}_1} + {{\rm{\vec p}}_2}\).

Do \(\left\{ {\begin{array}{*{20}{l}}{{{\vec p}_1} \uparrow \downarrow {{\vec p}_2}}\\{{p_1} > {p_2}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{p}} = \left| {{{\rm{p}}_1} - {{\rm{p}}_2}} \right| = \left| {75 - 40} \right| = 35{\rm{\;kg}}{\rm{.m/s}}.}\\{{\rm{\vec p}} \uparrow \uparrow {{{\rm{\vec p}}}_1} \uparrow \uparrow \overrightarrow {{\rm{AB}}} }\end{array}} \right.} \right.\)

Động lượng của hệ hai vật có độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\)

Mở rộng: Với các bài toán tổng hợp vectơ đơn thuần như trên, ta có thể giải nhanh bằng máy tính Casio bằng cách biểu diễn các vectơ dưới dạng số phức như sau:

\(\left\{ {\begin{array}{*{20}{l}}{{{{\rm{\vec p}}}_1} = 75\angle {0^ \circ }}\\{{{{\rm{\vec p}}}_2} = 40\angle {{180}^ \circ }}\end{array} \Rightarrow {\rm{\vec p}} = {{{\rm{\vec p}}}_1} + {{{\rm{\vec p}}}_2} = 75\angle {0^ \circ } + 40\angle {{180}^ \circ } = 35} \right.\)

Với trục \({\rm{Ox}}\) được chọn có gốc \({\rm{O}}\) trùng với điểm \({\rm{A}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).

index_html_fe8ab11975996101.png

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP