Câu hỏi:

19/10/2025 12 Lưu

Một nhà du hành vũ trụ có khối lượng \(75{\rm{\;kg}}\) đang đi bộ ngoài không gian. Do một sự cố, dây nối người với con tàu bị tuột. Để quay về con tàu vũ trụ, người đó ném một bình ôxi mang theo người có khối lượng \(10{\rm{\;kg}}\) về phía ngược với tàu với tốc độ \({\rm{v}} = 12{\rm{\;m}}/{\rm{s}}\). Giả sử ban đầu người đang đứng yên so với tàu, hỏi sau khi ném bình khí, người sẽ chuyển động về phía tàu với tốc độ V bằng

\(1,6{\rm{\;m}}/{\rm{s}}\).

\(90{\rm{\;m}}/{\rm{s}}\).

\(78{\rm{\;m}}/{\rm{s}}\).

\(1,85{\rm{\;m}}/{\rm{s}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng: A

Xét hệ gồm người (khối lượng \({\rm{M}}\)) và bình khí (khối lượng \({\rm{m}}\)). Chuyển động của hệ nói trên là một dạng chuyển động bằng phản lực.

Động lượng ban đầu của hệ trước khi ném bình khí: \({{\rm{\vec p}}_{\rm{t}}} = \vec 0\).

Động lượng của hệ sau khi người ném bình khí là: \({\vec p_s} = M\vec V + m\vec v\).

Áp dụng định luật bảo toàn động lượng ta có: \({\vec p_t} = {\vec p_s} \Leftrightarrow M\vec V + m\vec v = \vec 0 \Rightarrow \vec V = - \frac{m}{M}\vec v\).

Độ lớn: \({\rm{V}} = \frac{{10}}{{75}}.12 = 1,6{\rm{\;m}}/{\rm{s}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ

b) Đ

c) Khi vật chuyển động trên mặt phẳn nghiêng, trọng lực làm thay đổi động lượng nên không thể là hệ kín => S.

d) Trong chuyển động tròn đều \(\overrightarrow v \) đổi hướng nên \(\overrightarrow p \) không bảo toàn hướng => S.

Câu 2

độ lớn là \(115{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).

độ lớn là \(115{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{B}}\) đến \({\rm{A}}\).

độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).

độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{B}}\) đến \({\rm{A}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng: C

Shape1

Động lượng của vật \({{\rm{m}}_1}\) có độ lớn là: \({{\rm{p}}_1} = {{\rm{m}}_1}{{\rm{v}}_1} = 5.\frac{{54}}{{3,6}} = 75{\rm{\;kg}}{\rm{.m/s}}\).

Động lượng của vật \({{\rm{m}}_2}\) có độ lớn là: \({{\rm{p}}_2} = {{\rm{m}}_2}{{\rm{v}}_2} = 4.\frac{{36}}{{3,6}} = 40{\rm{\;kg}}{\rm{.m/s}}\).

Động lượng của hệ hai vật \({{\rm{m}}_1}\) và \({{\rm{m}}_2}\) là: \({\rm{\vec p}} = {{\rm{\vec p}}_1} + {{\rm{\vec p}}_2}\).

Do \(\left\{ {\begin{array}{*{20}{l}}{{{\vec p}_1} \uparrow \downarrow {{\vec p}_2}}\\{{p_1} > {p_2}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{p}} = \left| {{{\rm{p}}_1} - {{\rm{p}}_2}} \right| = \left| {75 - 40} \right| = 35{\rm{\;kg}}{\rm{.m/s}}.}\\{{\rm{\vec p}} \uparrow \uparrow {{{\rm{\vec p}}}_1} \uparrow \uparrow \overrightarrow {{\rm{AB}}} }\end{array}} \right.} \right.\)

Động lượng của hệ hai vật có độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\)

Mở rộng: Với các bài toán tổng hợp vectơ đơn thuần như trên, ta có thể giải nhanh bằng máy tính Casio bằng cách biểu diễn các vectơ dưới dạng số phức như sau:

\(\left\{ {\begin{array}{*{20}{l}}{{{{\rm{\vec p}}}_1} = 75\angle {0^ \circ }}\\{{{{\rm{\vec p}}}_2} = 40\angle {{180}^ \circ }}\end{array} \Rightarrow {\rm{\vec p}} = {{{\rm{\vec p}}}_1} + {{{\rm{\vec p}}}_2} = 75\angle {0^ \circ } + 40\angle {{180}^ \circ } = 35} \right.\)

Với trục \({\rm{Ox}}\) được chọn có gốc \({\rm{O}}\) trùng với điểm \({\rm{A}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).

index_html_fe8ab11975996101.png

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP