Một viên đạn có khối lượng \(3{\rm{\;kg}}\) đang rơi tự do, \(2{\rm{\;s}}\) sau khi rơi thì nổ thành hai mảnh có khối lượng gấp 2 lần nhau. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Nếu mảnh nhỏ bay theo phương ngang với vận tốc \(20\sqrt 3 {\rm{\;m}}/{\rm{s}}\) thì vận tốc của mảnh còn lại
có độ lớn \(20\sqrt 3 {\rm{\;m}}/{\rm{s}}\), hợp với hướng chuyển động của mảnh nhỏ một góc \({120^ \circ }\).
có độ lớn \(20\sqrt 3 {\rm{\;m}}/{\rm{s}}\), hợp với hướng chuyển động của mảnh nhỏ một góc \({60^ \circ }\).
có độ lớn \(40\sqrt 3 {\rm{\;m}}/{\rm{s}}\), hợp với hướng chuyển động của mảnh nhỏ một góc \({60^ \circ }\).
có độ lớn \(40\sqrt 3 {\rm{\;m}}/{\rm{s}}\), hợp với hướng chuyển động của mảnh nhỏ một góc \({120^ \circ }\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng: A
Phân tích:
Thời gian đạn nổ là rất ngắn nên có thể coi hệ là kín.
Tốc độ của đạn trước khi nổ xác định theo các công thức rơi tự do: \({\rm{v}} = \) g.t.
Sau khi nổ hai mảnh của đạn chuyển động với vận tốc \({{\rm{\vec v}}_1}\) và \({{\rm{\vec v}}_2}\) với \({{\rm{\vec v}}_1} \bot {\rm{\vec v}}\).

Xét hệ kín gồm hai mảnh đạn có khối lượng là \({{\rm{m}}_1}\) và \({{\rm{m}}_2}\).
Ta có: \(\left[ {\begin{array}{*{20}{l}}{{{\rm{m}}_2} = 2{\rm{\;}}{{\rm{m}}_1}}\\{{{\rm{m}}_2} + {{\rm{m}}_1} = 3{\rm{\;kg}}}\end{array} \Rightarrow \left[ {\begin{array}{*{20}{l}}{{{\rm{m}}_1} = 1{\rm{\;kg}}}\\{{{\rm{m}}_2} = 2{\rm{\;kg}}}\end{array}} \right.} \right.\)
Tốc độ của viên đạn ngay trước khi nổ là: \({\rm{v}} = {\rm{g}}{\rm{.t}} = 10.2 = 20{\rm{\;m}}/{\rm{s}}\).
Động lượng của hệ trước khi đạn nổ: \({\rm{\vec p}} = \left( {{{\rm{m}}_1} + {{\rm{m}}_2}} \right){\rm{\vec v}}\).
Động lượng của hệ sau khi đạn nổ: \({{\rm{\vec p}}^{\rm{'}}} = {{\rm{\vec p}}_1} + {{\rm{\vec p}}_2} = {{\rm{m}}_1}{\rm{.}}{{\rm{\vec v}}_1} + {{\rm{m}}_2}{\rm{.}}{{\rm{\vec v}}_2}\).
Áp dụng định luật bảo toàn động lượng ta có: \({\rm{\vec p}} = {{\rm{\vec p}}_1} + {{\rm{\vec p}}_2} \Leftrightarrow {\rm{\vec p}} - {{\rm{\vec p}}_1} = {{\rm{\vec p}}_2}\).
\({\rm{\vec p}} \bot {{\rm{\vec p}}_1} \Rightarrow {{\rm{p}}_2} = \sqrt {{{\rm{p}}^2} + {\rm{p}}_1^2} \)
\(\left\langle {\begin{array}{*{20}{l}}{{\rm{p}} = {\rm{mv}} = 3.20 = 60{\rm{\;kg}}{\rm{.m/s}}}\\{{{\rm{p}}_1} = {{\rm{m}}_1}{{\rm{v}}_1} = 1.20\sqrt 3 = 20\sqrt 3 {\rm{\;kg}}{\rm{.m/s}}}\end{array}} \right. \Rightarrow {{\rm{p}}_2} = \sqrt {{{60}^2} + {{(20\sqrt 3 )}^2}} = 40\sqrt 3 {\rm{\;kg}}{\rm{.m/s}}\).
\( \Rightarrow {{\rm{v}}_2} = \frac{{{{\rm{p}}_2}}}{{{\rm{\;}}{{\rm{m}}_2}}} = \frac{{40\sqrt 3 }}{2} = 20\sqrt 3 {\rm{\;m}}/{\rm{s}}\).
Gọi \(\alpha = \left( {{{{\rm{\vec p}}}_1};{{{\rm{\vec p}}}_2}} \right) \Rightarrow {{\rm{p}}^2} = {\rm{p}}_1^2 + {\rm{p}}_2^2 + 2{{\rm{p}}_1}{{\rm{p}}_2}{\rm{.cos}}\alpha \).

\( \Rightarrow {\rm{cos}}\alpha = \frac{{{{60}^2} - \left[ {{{(20\sqrt 3 )}^2} + {{(40\sqrt 3 )}^2}} \right]}}{{2.20\sqrt 3 .40\sqrt 3 }} = - \frac{1}{2} \Rightarrow \alpha = {120^ \circ }{\rm{.\;}}\)
Nhận xét: Ta có thể giải bằng phương pháp hình học như sau:
Xét tam giác \({\rm{ABC}}\) ta có: \({\rm{tan}}\widehat {{\rm{CAB}}} = \frac{{{{\rm{p}}_1}}}{{\rm{p}}} = \frac{{20\sqrt 3 }}{{60}}\)
\( \Rightarrow \widehat {{\rm{CAB}}} = {30^ \circ } \Rightarrow \alpha = {90^ \circ } + \widehat {{\rm{CAB}}} = {120^ \circ }\) \({\rm{sin}}\widehat {{\rm{CAB}}} = \frac{{{{\rm{p}}_1}}}{{{{\rm{p}}_2}}} \Leftrightarrow {\rm{sin}}{30^ \circ } = \frac{{20\sqrt 3 }}{{{{\rm{p}}_2}}} \Rightarrow {{\rm{p}}_2} = 40\sqrt 3 {\rm{\;kg}}{\rm{.m/s}} \Rightarrow {{\rm{v}}_2} = \frac{{{{\rm{p}}_2}}}{{{\rm{\;}}{{\rm{m}}_2}}} = \frac{{40\sqrt 3 }}{2} = 20\sqrt 3 {\rm{\;m/s}}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ
b) Đ
c) Khi vật chuyển động trên mặt phẳn nghiêng, trọng lực làm thay đổi động lượng nên không thể là hệ kín => S.
d) Trong chuyển động tròn đều \(\overrightarrow v \) đổi hướng nên \(\overrightarrow p \) không bảo toàn hướng => S.
Lời giải
b. Động lượng của một vật phụ thuộc vào khối lượng và vận tốc của vật. Hai vật có khối lượng khác nhau chuyển động cùng vận tốc thì có động lượng khác nhau.
c. Động lượng phụ thuộc vào hệ quy chiếu được chọn. Tùy vào hệ quy chiếu, giá trị động lượng sẽ khác nhau.
d. Trong chuyển động chậm dần đều, vận tốc của vật thay đổi theo thời gian. Vì vậy độ biến thiên động lượng có độ lớn khác không.
Câu 3
\(155{\rm{\;m}}/{\rm{s}}\).
\(255{\rm{\;m}}/{\rm{s}}\).
\(1525{\rm{\;m}}/{\rm{s}}\).
\(1225{\rm{\;m}}/{\rm{s}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(10{\rm{\;m/s}}\).
\(5\sqrt {10} {\rm{\;m/s}}\).
\(10\sqrt 5 {\rm{\;m/s}}\).
\(50{\rm{\;m/s}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
độ lớn là \(115{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).
độ lớn là \(115{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{B}}\) đến \({\rm{A}}\).
độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{A}}\) đến \({\rm{B}}\).
độ lớn là \(35{\rm{\;kg}}{\rm{.m/s}}\); phương là đường thẳng \({\rm{AB}}\), chiều từ \({\rm{B}}\) đến \({\rm{A}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
ngược hướng chuyển động của viên đạn và có độ lớn \(400{\rm{\;N}}\).
cùng hướng chuyển động của viên đạn và có độ lớn \(400{\rm{\;N}}\).
ngược hướng chuyển động của viên đạn và có độ lớn \(800{\rm{\;N}}\).
cùng hướng chuyển động của viên đạn và có độ lớn \(800{\rm{\;N}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(8{\rm{\;N}}\).
\(8\sqrt 3 {\rm{\;N}}\).
\(16{\rm{\;N}}\).
\(16\sqrt 3 {\rm{\;N}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


