Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất \[35\% ,\]máy II sản xuất \[65\% \]tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là \[0,3\% \]và \[0,7\% .\]Chọn ngẫu nhiên \(1\) sản phẩm từ kho. Tính xác suất để chọn được phế phẩm?
\(0,0056\).
\(0,0065\).
\(0,065\).
\(0,056\).
Quảng cáo
Trả lời:

Chọn đáp án A
Gọi \({A_1}\)là biến cố “Sản phẩm được chọn do máy I sản xuất”;
\({A_2}\) là biến cố “Sản phẩm được chọn do máy II sản xuất”;
B là biến cố “Sản phẩm được chọn là phế phẩm”.
Ta có \(P\left( {{A_1}} \right) = 0,35\), \(P\left( {{A_2}} \right) = 0,65\), \(P\left( {B|{A_1}} \right) = 0,003\), \(P\left( {B|{A_2}} \right) = 0,007\)
\(P\left( B \right) = P\left( {B|{A_1}} \right).P\left( {{A_1}} \right) + P\left( {B|{A_2}} \right).P\left( {{A_2}} \right) = 0,0056\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảo hiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].
Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].
Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].
Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].
b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.
Lời giải
a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).
b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).
c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.
Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).
Theo công thức xác suất toàn phần ta có
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).
d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).
Câu 3
\(\frac{1}{2}\).
\(\frac{1}{3}\).
\(\frac{2}{3}\).
\(\frac{1}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\frac{5}{7}\).
\(\frac{1}{2}\).
\(\frac{7}{{50}}\).
\(\frac{2}{7}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\frac{6}{{25}}\).
\(\frac{2}{3}\).
\(\frac{1}{5}\).
\(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(0,4\).
\(0,1\).
\(0,6\).
\(0,3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\[P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)\].
\[P\left( A \right) = P\left( A \right)P\left( {A|B} \right) + P\left( {\overline A } \right)P\left( {A|\overline B } \right)\].
\[P\left( A \right) = P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)\].
\[P\left( A \right) = P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.