Câu hỏi:

21/10/2025 6 Lưu

Chạy Marathon là môn thể thao mà tại đó, người chơi sẽ hoàn thành quãng đường 42,195 km trong khoảng thời gian nhất định. FM sub 4 là thành tích dành cho những người chơi hoàn thành quãng đường Marathon dưới 4 giờ. Trong CLB AKR, tỷ lệ thành viên nam là \[72\% \], tỷ lệ thành viên nữ là \[28\% \]. Đối với nam, tỷ lệ VĐV hoàn thành Marathon sub 4 là \[32\% \]; đối với nữ tỷ lệ VĐV hoàn thành sub 4 là \[3\% \]. Chọn ngẫu nhiên 1 thành viên từ CLB AKR.

a) Khi VĐV được chọn là nam, xác suất để VĐV này chưa hoàn thành sub 4 cự ly Marathon là \[68\% \].

b) Xác suất để thành viên được chọn đã hoàn thành sub 4 là \[22\% \].

c) Xác suất để thành viên được chọn là nữ đã hoàn thành sub 4 là \[2\% \].

d) Biết rằng VĐV được chọn đã hoàn thành sub 4, xác suất để VĐV đó là nam bằng \[96\% \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[A\] là biến cố VĐV được chọn là nam.

Gọi \[B\] là biến cố VĐV được chọn đã hoàn thành cự ly Marathon sub 4.

a) Đúng. Khi VĐV được chọn là nam, xác suất để VĐV này chưa hoàn thành sub 4 cự ly Marathon là: \[P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 32\%  = 68\% \].

b) Sai. Xác suất để VĐV được chọn đã hoàn thành sub 4 là:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,72.0,32 + 0,28.0,03 \approx 0,24 = 24\% \].

c) Sai. Xác suất để VĐV được chọn là nữ và đã hoàn thành sub 4 là:

\[
P(\overline{A} \cdot B)
= P(\overline{A}) \, P(B \mid \overline{A})
= 0.28 \times 0.03
\approx 0.0084
\approx 0.84\%.
\]

d) Đúng. Biết VĐV đã hoàn thành sub 4, xác suất để VĐV đó là nam là:

\[
P(\overline{A} \cap B)
= P(\overline{A}) \, P(B \mid \overline{A})
= 0.28 \times 0.03
\approx 0.0084
\approx 0.84\%.
\]

\[ = \frac{{0,72.0,32}}{{0,72.0,32 + 0,28.0,03}} \approx 0,96 = 96\% \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảo hiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].

Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].

Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].

b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.

Lời giải

a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).

b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).

c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).

Theo công thức xác suất toàn phần ta có

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).

d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.

\[P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)\].

B.

\[P\left( A \right) = P\left( A \right)P\left( {A|B} \right) + P\left( {\overline A } \right)P\left( {A|\overline B } \right)\].

C.

\[P\left( A \right) = P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)\].

D.

\[P\left( A \right) = P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP