Sau một trận bão lớn, một cái cây mọc thẳng đứng ở vị trí \(C\) đã bị gãy ngang tại \(A\) (như hình vẽ). Ngọn cây chạm mặt đất cách gốc một khoảng \(BC = 5{\rm{ m}}\). Biết rằng phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\). (Các kết quả làm tròn đến chữ số thập phân thứ hai)

a) \(\sin \widehat {ABC} = \frac{2}{3}.\)
b) Góc tạo bởi phần thân bị gãy và mặt đất nhỏ hơn \(42^\circ \).
c) Độ dài phần ngọn bị gãy nhỏ hơn \(6,5{\rm{ m}}{\rm{.}}\)
d) Chiều cao ban đầu của cây khoảng \(11,18{\rm{ m}}{\rm{.}}\)
Sau một trận bão lớn, một cái cây mọc thẳng đứng ở vị trí \(C\) đã bị gãy ngang tại \(A\) (như hình vẽ). Ngọn cây chạm mặt đất cách gốc một khoảng \(BC = 5{\rm{ m}}\). Biết rằng phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\). (Các kết quả làm tròn đến chữ số thập phân thứ hai)

a) \(\sin \widehat {ABC} = \frac{2}{3}.\)
b) Góc tạo bởi phần thân bị gãy và mặt đất nhỏ hơn \(42^\circ \).
c) Độ dài phần ngọn bị gãy nhỏ hơn \(6,5{\rm{ m}}{\rm{.}}\)
d) Chiều cao ban đầu của cây khoảng \(11,18{\rm{ m}}{\rm{.}}\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Đúng.
• Theo đề bài, phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\) hay \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(\frac{{AC}}{{AB}} = \frac{2}{3}\).
Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\). Do đó, ý a) là đúng.
• Vì \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\) nên \(\alpha = \widehat {ABC} \approx 41^\circ 49'.\) Do đó, ý b) là đúng.
• Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(AC = BC \cdot \tan \widehat {ABC} \approx 5 \cdot \tan 41^\circ 49' \approx 4,47{\rm{\;(m)}}{\rm{.}}\)
Mà \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(AB = \frac{3}{2}AC \approx \frac{3}{2} \cdot 4,47 = 6,705{\rm{ (m)}}{\rm{.}}\)
Độ dài phần ngọn bị gãy là độ dài đoạn thẳng \(AB\). Do đó, ý c) là sai.
• Độ dài cây ban đầu là tổng của phần ngọn bị gãy \(AB\) và phần gốc \(AC\).
Vậy chiều cao ban đầu của cây khoảng: \[4,47 + 6,705 = 11,175 \approx 11,18{\rm{\;(m)}}{\rm{.}}\]Do đó, ý d) là đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 1
Ta có: Điều kiện xác định: \(x \ne 0,{\rm{ }}x \ne 3\).
Ta có: \(\frac{{2x - 5}}{{x - 3}} - \frac{1}{x} = \frac{{6x + 3}}{{{x^2} - 3x}}\)
\(\frac{{\left( {2x - 5} \right)x}}{{\left( {x - 3} \right)x}} - \frac{{x - 3}}{{x\left( {x - 3} \right)}} = \frac{{6x + 3}}{{\left( {x - 3} \right)x}}\)
\(\frac{{2{x^2} - 5x - x + 3}}{{\left( {x - 3} \right)x}} = \frac{{6x + 3}}{{\left( {x - 3} \right)x}}\)
\(2{x^2} - 5x - x + 3 = 6x + 3\)
\(2{x^2} - 5x - x + 3 - 6x - 3 = 0\)
\(2{x^2} - 12x = 0\)
\(2x\left( {x - 6} \right) = 0\)
Suy ra \(x = 0\)(loại) hoặc \(x = 6\)(TM).
Vậy \(x = 6\) là nghiệm của phương trình.
Vậy có 1 giá trị của \(x\) thỏa mãn yêu cầu bài toán.
Lời giải
Hướng dẫn giải
![ho đường tròn \[\left( O \right)\] và điểm \[A\] nằm bên (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1761101459.png)
a) Vì \(AM,\,\,AN\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) lần lượt tại \(M,\,\,N\) nên \(AM \bot OM,\,\,AN \bot ON.\)
Gọi \[E\] là trung điểm của \[OA\]. Khi đó \(OE = AE = \frac{1}{2}OA.\)
Xét \[\Delta MOA\] vuông tại \[M\] có \[ME\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[ME = \frac{1}{2}OA\].
Xét \[\Delta NOA\] vuông tại \[N\] có \[NE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[NE = \frac{1}{2}OA\].
Vì \[NE = ME = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,M,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].
b) Xét \[\Delta COB\] cân tại \[O\] (do \[OC = OB\]) có \[OI\] là đường trung tuyến nên đồng thời là đường cao, do đó \[OI \bot BC\]. Suy ra \[\Delta IOA\] vuông tại \[I\].
Xét \[\Delta IOA\] vuông tại \[I\] có \[IE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[IE = \frac{1}{2}OA\].
Khi đó, ta có \[NE = IE = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,I,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].
Suy ra \[\widehat {AIN} = \widehat {AON}\] (hai góc nội tiếp cùng chắn cung \[AN\] của đường tròn tâm \[E\]). (*)
Xét đường tròn \(\left( O \right)\) có \[AM,AN\] là hai tiếp tuyến cắt nhau tại \[A\], suy ra \[OA\] là phân giác của \[\widehat {MON}\]
Do đó, \[\widehat {AON} = \frac{1}{2}\widehat {MON}\].
Mà \[\widehat {NFM} = \frac{1}{2}\widehat {MON}\] (góc nội tiếp và góc ở tâm cùng chắn cung \[MN\])
Suy ra \[\widehat {NFM} = \widehat {AON}\] (**)
Từ (*) và (**), suy ra \[\widehat {NFM} = \widehat {AIN}\].
Mà hai góc này ở vị trí đồng vị, do đó \[MF\,{\rm{//}}\,AC\].
c)
![ho đường tròn \[\left( O \right)\] và điểm \[A\] nằm bên (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/10/13-1761101469.png)
⦁ Gọi \(H\) là giao điểm của \(MN\) và \(OA.\)
Ta có \(AM = AN\) (tính chất hai tiếp tuyến cắt nhau) và \(OM = ON\) nên \(A,\,\,O\) cùng nằm trên đường trung trực của \(MN\) hay \(OA\) là đường trung trực của \(MN\).
Suy ra \[MN \bot OA\] hay \[HN \bot OA\].
Xét \[\Delta OHN\] và \[\Delta ONA\], có: \[\widehat {OHN} = \widehat {ONA} = 90^\circ \] và \[\widehat {AON}\] là góc chung
Do đó (g.g)
Suy ra \[\frac{{OH}}{{ON}} = \frac{{ON}}{{OA}}\] suy ra \[OH.OA = O{N^2} = {R^2}\] (3).
⦁ Ta có \(OC = OB,\,\,IC = IB\) (do \(I\) là trung điểm của \(BC),\) \(KC = KB\) (tính chất hai tiếp tuyến cắt nhau) nên ba điểm \(O,\,\,I,\,\,K\) thẳng hàng.
Xét \[\Delta OIB\] và \[\Delta OBK\], có: \[\widehat {OIB} = \widehat {OBK} = 90^\circ \] và \[\widehat {BOK}\] là góc chung
Do đó (g.g)
Suy ra \[\frac{{OI}}{{OB}} = \frac{{OB}}{{OK}}\] suy ra \[OI.OK = O{B^2} = {R^2}\] (4).
Từ (3) và (4) suy ra \[OI.OK = OH.OA = {R^2}.\] Từ đó, ta có \[\frac{{OI}}{{OH}} = \frac{{OA}}{{OK}}\].
Xét \[\Delta OIA\] và \[\Delta OHK\] có: \[\widehat {AOK}\] là góc chung và \[\frac{{OI}}{{OH}} = \frac{{OA}}{{OK}}\]
Do đó (c.g.c)
Suy ra \[\widehat {OHK} = \widehat {OIA} = 90^\circ \], suy ra \[HK \bot OA\].
Mà \[MN \bot OA\] tại \[H\] và \[MN\] cố định (do điểm \(A\) cố định), do đó \[K\] thuộc \[MN\] cố định.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.