Câu hỏi:

24/10/2025 33 Lưu

Tìm các số nguyên \(x,\,\,y\) thỏa mãn:

a) \(\left( {x + 3} \right)\left( {y - 5} \right) = - 5.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Với \(x \in \mathbb{Z},\) từ \(\left( {x + 3} \right)\left( {y - 5} \right) = - 5\) ta có \(x + 3 \in \)Ư\(\left( { - 5} \right) = \left\{ {1;\,\, - 1;\,\,5;\,\, - 5} \right\}\).

Ta có bảng sau:

\(x + 3\)

\(1\)

\( - 1\)

\(5\)

\( - 5\)

\(y - 5\)

\( - 5\)

\(5\)

\( - 1\)

\(1\)

\(x \in \mathbb{Z}\)

\( - 2\)

\( - 4\)

\(2\)

\( - 8\)

\(y \in \mathbb{Z}\)

\(0\)

\(10\)

\(4\)

\(6\)

 

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(\left( {x;\,\,y} \right) \in \left\{ {\left( { - 2;\,\,0} \right);\,\,\left( { - 4;\,\,10} \right);\,\,\left( {2;\,\,4} \right);\,\,\left( { - 8;6} \right)} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Vì robot được lập trình cứ tiến 6 bước thì lùi 2 bước nên mỗi lượt thực hiện một lập trình, robot đi được quãng đường là: \(6 \cdot 5 - 2 \cdot 5 = 20{\rm{\;dm}}{\rm{.}}\)

Như vậy, mỗi lần thực hiện một lập trình robot đi được quãng đường \(20{\rm{\;dm}}\) và bước tổng \(6 + 2 = 8\) bước.

Ta có: \(126:8 = 15\) dư 6.

Do đó để đến B thì robot đã thực hiện 15 lập trình và bước thêm 6 bước.

Khi đó, quãng đường robot đi được là: \(15 \cdot 20 + 6 \cdot 5 = 330{\rm{\;(dm)}}{\rm{.}}\)

Vậy khoảng cách từ A đến B dài 330 dm.

Lời giải

Hướng dẫn giải

Ta có:

\[A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}}\]

 \[ = \left( {2 + {2^2} + {2^3} + {2^4}} \right) + \left( {{2^5} + {2^6} + {2^7} + {2^8}} \right) + ... + \left( {{2^{117}} + {2^{118}} + {2^{119}} + {2^{120}}} \right)\]    (30 nhóm)

 \( = 2 \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + {2^5} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + ... + {2^{117}} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right)\)

 \( = \left( {1 + 2 + {2^2} + {2^3}} \right) \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

 \( = 15 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

 \( = 3 \cdot 5 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

Kết quả trên chia hết cho 3 và 5 nên \(A\,\, \vdots \,\,3,\,\,\,A\,\, \vdots \,\,5.\)

\(A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}} = \left( {2 + {2^2} + {2^3}} \right) + \left( {{2^4} + {2^5} + {2^6}} \right) + ... + \left( {{2^{118}} + {2^{119}} + {2^{120}}} \right)\)       (40 nhóm)

\( = 2 \cdot \left( {1 + 2 + {2^2}} \right) + {2^4} \cdot \left( {1 + 2 + {2^2}} \right) + ... + {2^{118}} \cdot \left( {1 + 2 + {2^2}} \right)\)

\( = \left( {1 + 2 + {2^2}} \right) \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\)

\( = 7 \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\,\,\, \vdots \,\,\,7.\)

Do đó \(A\,\, \vdots \,\,7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP