Câu hỏi:

24/10/2025 142 Lưu

Chứng minh rằng với mọi số tự nhiên \[n,\] các cặp số sau là các số nguyên tố cùng nhau (hai số có ước chung lớn nhất là 1):

        a) \(n + 5\)\(n + 6\).                           b) \(5n + 3\)\(3n + 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi ƯCLN\(\left( {n + 5,\,\,n + 6} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right),\) suy ra \(\left( {n + 5} \right)\,\, \vdots \,\,d\)\(\left( {n + 6} \right)\,\, \vdots \,\,d\).

Do đó \(\left[ {\left( {n + 6} \right) - \left( {n + 5} \right)} \right]\,\, \vdots \,\,d\) hay \(1\,\, \vdots \,\,d\) nên \(d = 1.\)

Vậy \(n + 5\)\(n + 6\) là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN\(\left( {5n + 3,\,\,3n + 2} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right),\) suy ra \(\left( {5n + 3} \right)\,\, \vdots \,\,d\)\(\left( {3n + 2} \right)\,\, \vdots \,\,d\).

Từ \(\left( {5n + 3} \right)\,\, \vdots \,\,d\) ta có \[3\left( {5n + 3} \right)\,\, \vdots \,\,d\] hay \(\left( {15n + 9} \right)\,\, \vdots \,\,d\).

Từ \(\left( {3n + 2} \right)\,\, \vdots \,\,d\) ta có \(5\left( {3n + 2} \right)\,\, \vdots \,\,d\) hay \(\left( {15n + 10} \right)\,\, \vdots \,\,d\)

Do đó \(\left[ {\left( {15n + 10} \right) - \left( {15n + 9} \right)} \right]\,\, \vdots \,\,d\) hay \(1\,\, \vdots \,\,d\) nên \(d = 1.\)

Vậy \(5n + 3\)\(3n + 2\) là hai số nguyên tố cùng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số học sinh của trường đó là \(a\) học sinh \(\left( {a \in \mathbb{N},600 > a > 13} \right)\).

Khi xếp thành 8 hàng, 12 hàng, 15 hàng thì dư lần lượt 6 học sinh, 10 học sinh, 13 học sinh nên ta có \(a - 6\) chia hết cho 8, \(a - 10\) chia hết cho 10; \(a - 13\) chia hết cho 15.

Hay nhận thấy \(\left( {a + 2} \right) \vdots 8\); \(\left( {a + 2} \right) \vdots 10\); \(\left( {a + 2} \right) \vdots 15\).

Do đó, \(\left( {a + 2} \right)\) là BC\(\left( {8,{\rm{ 12, 15}}} \right)\)

Ta có: \(8 = {2^3};{\rm{ }}12 = {2^2} \cdot 3;{\rm{ 1}}5 = 3 \cdot 5\) suy ra BCNN\(\left( {8,{\rm{ 12, 15}}} \right)\)\( = {2^3} \cdot 3 \cdot 5 = 120\).

Do đó, \(a + 2 = 120 \cdot k\) (với \(k\) là số tự nhiên)

Nếu \(k = 0\) thì \(a = - 2\) (loại)

Nếu \(k = 1\) thì \(a = 118\) (loại) (vì 118 không chia hết cho 13)

Nếu \(k = 2\) thì \(a = 238\) (loại) (vì 238 không chia hết cho 13)

Nếu \(k = 3\) thì \(a = 358\) (loại) (vì 358 không chia hết cho 13)

Nếu \(k = 4\) thì \(a = 478\) (loại) (vì 478 không chia hết cho 13)

Nếu \(k = 5\) thì \(a = 598\) (thỏa mãn vì 598 chia hết cho 13).

Nếu \(k = 6\) thì \(a = 718\) (loại vì \(a < 600\)).

Vậy số học sinh của trường này là 598 học sinh.

Lời giải

Hướng dẫn giải

Ta có:

\[A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}}\]

 \[ = \left( {2 + {2^2} + {2^3} + {2^4}} \right) + \left( {{2^5} + {2^6} + {2^7} + {2^8}} \right) + ... + \left( {{2^{117}} + {2^{118}} + {2^{119}} + {2^{120}}} \right)\]    (30 nhóm)

 \( = 2 \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + {2^5} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + ... + {2^{117}} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right)\)

 \( = \left( {1 + 2 + {2^2} + {2^3}} \right) \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

 \( = 15 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

 \( = 3 \cdot 5 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

Kết quả trên chia hết cho 3 và 5 nên \(A\,\, \vdots \,\,3,\,\,\,A\,\, \vdots \,\,5.\)

\(A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}} = \left( {2 + {2^2} + {2^3}} \right) + \left( {{2^4} + {2^5} + {2^6}} \right) + ... + \left( {{2^{118}} + {2^{119}} + {2^{120}}} \right)\)       (40 nhóm)

\( = 2 \cdot \left( {1 + 2 + {2^2}} \right) + {2^4} \cdot \left( {1 + 2 + {2^2}} \right) + ... + {2^{118}} \cdot \left( {1 + 2 + {2^2}} \right)\)

\( = \left( {1 + 2 + {2^2}} \right) \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\)

\( = 7 \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\,\,\, \vdots \,\,\,7.\)

Do đó \(A\,\, \vdots \,\,7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP