Câu hỏi:

26/10/2025 37 Lưu

Cho \(A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}}.\) Chứng minh rằng giá trị của biểu thức \(A\) chia hết cho cả \(3,\,\,5,\,\,7.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có:

\[A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}}\]

 \[ = \left( {2 + {2^2} + {2^3} + {2^4}} \right) + \left( {{2^5} + {2^6} + {2^7} + {2^8}} \right) + ... + \left( {{2^{117}} + {2^{118}} + {2^{119}} + {2^{120}}} \right)\]    (30 nhóm)

 \( = 2 \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + {2^5} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + ... + {2^{117}} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right)\)

 \( = \left( {1 + 2 + {2^2} + {2^3}} \right) \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

 \( = 15 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

 \( = 3 \cdot 5 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)

Kết quả trên chia hết cho 3 và 5 nên \(A\,\, \vdots \,\,3,\,\,\,A\,\, \vdots \,\,5.\)

\(A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}} = \left( {2 + {2^2} + {2^3}} \right) + \left( {{2^4} + {2^5} + {2^6}} \right) + ... + \left( {{2^{118}} + {2^{119}} + {2^{120}}} \right)\)       (40 nhóm)

\( = 2 \cdot \left( {1 + 2 + {2^2}} \right) + {2^4} \cdot \left( {1 + 2 + {2^2}} \right) + ... + {2^{118}} \cdot \left( {1 + 2 + {2^2}} \right)\)

\( = \left( {1 + 2 + {2^2}} \right) \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\)

\( = 7 \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\,\,\, \vdots \,\,\,7.\)

Do đó \(A\,\, \vdots \,\,7.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi chiều rộng hình chữ nhật nhỏ là \(b\), chiều dài hình chữ nhật nhỏ là \(a\,\,\left( {x,b > 0,\,\,{\rm{m}}} \right)\).

Chu vi của khu vườn hình chữ nhật là \(\left( {2a + a + 2b} \right) \cdot 2 = 76\)

Hay \(6a + 4b = 76\) (1)

Ta có \(2a = 5b\) nên \(6a = 15b\) (2)

Thay (2) vào (1) ta được \(15b + 4b = 76\) hay \(19b = 76\) nên \(b = 76:19\) suy ra \(b = 4.\)

Suy ra \(a = 10\,\,\left( {\rm{m}} \right)\).

Suy ra chiều dài ban đầu của khu vườn là \(2 \cdot 10 = 20{\rm{ }}\left( {\rm{m}} \right)\).

Chiều rộng ban đầu của khu vườn là: \(a + 2b = 10 + 2 \cdot 4 = 18{\rm{ }}\left( {\rm{m}} \right)\).

Diện tích ban đầu của khu vườn là: \(20 \cdot 18 = 360{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Vậy diện tích khu vườn ban đầu là \(360{\rm{ }}{{\rm{m}}^2}.\)

Lời giải

Hướng dẫn giải

Vì robot được lập trình cứ tiến 6 bước thì lùi 2 bước nên mỗi lượt thực hiện một lập trình, robot đi được quãng đường là: \(6 \cdot 5 - 2 \cdot 5 = 20{\rm{\;dm}}{\rm{.}}\)

Như vậy, mỗi lần thực hiện một lập trình robot đi được quãng đường \(20{\rm{\;dm}}\) và bước tổng \(6 + 2 = 8\) bước.

Ta có: \(126:8 = 15\) dư 6.

Do đó để đến B thì robot đã thực hiện 15 lập trình và bước thêm 6 bước.

Khi đó, quãng đường robot đi được là: \(15 \cdot 20 + 6 \cdot 5 = 330{\rm{\;(dm)}}{\rm{.}}\)

Vậy khoảng cách từ A đến B dài 330 dm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP