Câu hỏi:

25/10/2025 112 Lưu

Nhà bạn thu có một đèn trang trí có dạng hình chóp tam giác đều như hình bẽ bên. Các cạnh của hình chóp đều bằng nhau và bằng \(20{\rm{ cm}}\). Bạn Thu dự định sẽ dán các mặt bên của đèn bằng những tấm giấy màu.

Nhà bạn thu có một đèn trang trí có dạng hình chóp tam giác đều như hình bẽ bên. Các cạnh của hình chóp đều bằng nhau và bằng  20 c m . Bạn Thu dự định sẽ dán các mặt bên của đèn bằng những tấm giấy màu. (ảnh 1)

Tính diện tích giấy màu mà bạn Thu sử dụng (đơn vị: cm2, coi như mép dán không đáng kể). Cho biết \(\sqrt {300} = 17,32\). (Kết quả làm tròn đến hàng đơn vị)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

520

Đáp án: 520

Các mặt bên và mặt đáy của hình chóp \(S.ABC\) là những tam giác đều cạnh \(20{\rm{ cm}}{\rm{.}}\)

Xét tam giác đều \(SAB\) có đường cao \(SH\) đồng thời là đường trung tuyến, ta có:

\(AH = BH = \frac{{AB}}{2} = 10{\rm{ cm}}\).

Xét tam giác \(SHB\) vuông tại \(H\). Theo định lí Pythagore, ta có:

\(S{B^2} = S{H^2} + B{H^2}\) hay \({20^2} = S{H^2} + {10^2}\) suy ra \(S{H^2} = S{B^2} - B{H^2} = 300\).

Suy ra \(SH = \sqrt {300} \approx 17,32{\rm{ }}\left( {{\rm{cm}}} \right)\).

Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {20 + 20 + 20} \right) = 30{\rm{ }}\left( {{\rm{cm}}} \right)\).

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = P.d = SH.P = 30.17,32 = 519,6 \approx 520{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.

Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\) Gọi đường cao của mặt đáy là \(CH\), ta có \(CH\) đồng thời là đường trung tuyến.

\(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)

b) Đúng.

Xét tam giác \(BHC\) vuông tại \(H\). Theo định lý Pythagore ta có: \(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\) suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

c) Sai.

Vì \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Xét tam giác \(SHG\) vuông tại \(G\). Theo định lý Pythagore, ta có:

\(S{H^2} = S{G^2} + H{G^2}\)

\(S{H^2} = {90^2} + {30^2} = 9000\)

Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\)

d) Đúng.

Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\)

Vậy diện tích xung quanh của hình chóp là \(S = P.d = 90.30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Lời giải

Đáp án: 1836

Ta minh họa bảo tàng bằng hình chóp tứ giác sau:

index_html_919498a21faa71b8.png

Đường cao của hình chóp \(SO\) vuông góc với mặt đáy \(ABCD\) nên \(SO \bot OH.\)

Dễ thấy \(OH = \frac{1}{2}DC = \frac{1}{2}.34 = 17{\rm{ }}\left( {\rm{m}} \right)\)

Xét tam giác \(SOH\) vuông tại \(O.\)

Theo định lí Pythagore, ta có: \(S{H^2} = S{O^2} + O{H^2}\)

Suy ra \(S{H^2} = {21^2} + {17^2} = 730\)

Suy ra \(SH = \sqrt {730} \approx 27{\rm{ }}\left( {\rm{m}} \right)\).

Nửa chu vi mặt đáy là: \(P = \frac{1}{2}\left( {34 + 34 + 34 + 34} \right) = 68{\rm{ }}\left( {\rm{m}} \right)\)

Tổng diện tích các tấm kính để phủ kín bốn mặt bên của bảo tàng hình chóp này là:

\({S_{xq}} = P.d = 68.27 = 1836{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

Nửa chu vi đáy nhân với đường cao.

B.

Chu vi đáy nhân với trung đoạn.

C.

Nửa chu vi đáy nhân với trung đoạn.

D.

Chu vi đáy nhân với chiều cao.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP