Câu hỏi:

26/10/2025 10 Lưu

Cho hàm số \(y = \frac{{ - {x^2} + 3x - 1}}{{x - 2}}\). Tọa độ giao điểm của các đường tiệm cận của đồ thị hàm số là:

A. \(\left( { - 2;\,3} \right)\).                                   
B. \(\left( {2;\,1} \right)\).               
C. \(\left( {2;\, - 1} \right)\).                          
D. \(\left( {3;\,2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(y = \frac{{ - {x^2} + 3x - 1}}{{x - 2}} = - x + 1 + \frac{1}{{x - 2}}\).

\[\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( { - x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{1}{{x - 2}}} \right) = 0,\,\,\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{{x - 2}}} \right) = 0\].

Vậy tiệm cận xiên của đồ thị hàm số là \(y = - x + 1\).

\(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{ - {x^2} + 3x - 1}}{{x - 2}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{ - {x^2} + 3x - 1}}{{x - 2}} = - \infty \).

Vậy tiệm cận đứng của đồ thị hàm số là \(x = 2\).

Vậy tọa độ giao điểm của hai đường tiệm cận là \(\left( {2;\, - 1} \right)\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + 3}}{{x - 2}} = + \infty ;\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} + 3}}{{x - 2}} = - \infty \). Suy ra \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

\(y = x + 2 + \frac{7}{{x - 2}}\).

Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{7}{{x - 2}} = 0\). Do đó \(y = x + 2\) là tiệm cận xiên của đồ thị hàm số.

Đường thẳng \({d_2}:y = x + 2\) cắt trục \(Oy\) tại \(A\left( {0;2} \right)\).

Đường thẳng \({d_1}:x = 2\) cắt \({d_2}:y = x + 2\) tại \(B\left( {2;4} \right)\).

Đường thẳng \({d_1}:x = 2\) cắt trục \(Ox\) tại \(C\left( {2;0} \right)\).

Do đó hai đường tiệm cận của đồ thị \(\left( C \right)\) cùng với hai trục tọa độ tạo thành một hình thang vuông \(OABC\).

Cho hàm số \(y = \frac{{{x^2} + 3}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Hai đường tiệm cận của đồ thị \(\left( C \right)\) cùng với hai trục tọa độ tạo thành một hình thang vuông có diện tích \(S\). Tính \(S\). (ảnh 1)

Khi đó \({S_{OABC}} = \frac{{\left( {OA + BC} \right).OC}}{2} = 6\).

Trả lời: 6.

Lời giải

\[\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{{x^2} + 2x + 5}}{{x + 1}} = - \infty \]; \[\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} + 2x + 5}}{{x + 1}} = + \infty \] nên \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

\[y = \frac{{{x^2} + 2x + 5}}{{x + 1}} = x + 1 + \frac{4}{{x + 1}}\].

\[\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{4}{{x + 1}} = 0\] nên \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.

Suy ra giao điểm của hai đường tiệm cận là \(\left( { - 1;0} \right)\). Do đó \(a + b = - 1\).

Trả lời: −1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[y = 2x - 1\].              
B. \[y = x + 2\].              
C. \[y = 2 - x\].                                   
D. \[y = x - 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = 2\).                      
B. \(x = - 1\).                  
C. \(x = 3\).                                    
D. \(x = - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP