Trong không gian với hệ tọa độ Oxyz, cho tam giác \(ABC\) có \(A\left( {1;0;0} \right)\), \(B\left( {0;0;1} \right)\), \(C\left( {2;1;1} \right)\). Diện tích của tam giác \(ABC\) bằng:
Quảng cáo
Trả lời:
Ta có: \(\overrightarrow {AB} = \left( { - 1;\;0;\;1} \right),\overrightarrow {AC} = \left( {1;\;1;\;1} \right)\)\( \Rightarrow \left( { - 1} \right).1 + 0.1 + 1.1 = 0 \Rightarrow AB \bot AC\).
Nên diện tích tam giác \(ABC\) là \(S = \frac{1}{2}AB.AC = \frac{{\sqrt 6 }}{2}\). Chọn C.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi điểm \(M\left( {x;y;z} \right)\). Khi đó: \(\overrightarrow {AM} = 2\overrightarrow {MB} \)\( \Leftrightarrow \left\{ \begin{array}{l}x - 4 = 2\left( { - 2 - x} \right)\\y - 2 = 2\left( { - 1 - y} \right)\\z - 1 = 2\left( {4 - z} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 0\\z = 3\end{array} \right.\).
Vậy \(M\left( {0;0;3} \right)\) nên \(a + b + c = 3\).
Trả lời: 3.
Lời giải
a) \(\overrightarrow {OM} = \left( { - 4;3; - 1} \right)\).
b) \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \)\( \Rightarrow \overrightarrow v = \left( {1;2; - 3} \right)\). Giả sử \(A\left( {x;y;z} \right)\).
Vì \(\overrightarrow {AM} = \overrightarrow v \) nên
c) Ta có \(G\left( {\frac{{ - 2}}{3};\frac{2}{3}; - \frac{4}{3}} \right)\). Tọa độ hình chiếu của \(G\) trên \(\left( {Oxy} \right)\) là \(\left( { - \frac{2}{3};\frac{2}{3};0} \right)\).
d) Vì I là trung điểm của MN nên \(I\left( {\frac{{ - 4 + 2}}{2};\frac{{3 - 1}}{2};\frac{{ - 1 - 3}}{2}} \right) \Rightarrow I\left( { - 1;1; - 2} \right)\).
Theo giả thiết \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} = 3\left( {1;0;0} \right) + 2\left( {2; - 1; - 3} \right) - \frac{1}{2}\left( { - 1;1; - 2} \right)\) \( \Rightarrow \overrightarrow w = \left( {\frac{{15}}{2}; - \frac{5}{2}; - 5} \right)\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.