Phần III. Trắc nghiệm trả lời ngắn
Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được mô tả bằng biểu đồ bên.

Xác định phương sai của thời gian sử dụng pin (làm tròn đến hàng phần trăm).
Phần III. Trắc nghiệm trả lời ngắn
Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được mô tả bằng biểu đồ bên.

Xác định phương sai của thời gian sử dụng pin (làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Từ biểu đồ, ta có bảng thống kê sau:
|
Thời gian (giờ) |
[7,2; 7,4) |
[7,4; 7,6) |
[7,6; 7,8) |
[7,8; 8,0) |
|
Giá trị đại diện |
7,3 |
7,5 |
7,7 |
7,9 |
|
Số máy vi tính |
2 |
4 |
7 |
5 |
Cỡ mẫu là \[n = 2 + 4 + 7 + 5 = 18.\]
Số trung bình của mẫu số liệu ghép nhóm là:
\[\overline x = \frac{{2.7,3 + 4.7,5 + 7.7,7 + 5.7,9}}{{18}} = \frac{{23}}{3}\].
Phương sai của mẫu số liệu ghép nhóm là:
\[{S^2} = \frac{1}{{18}}\left[ {2.{{\left( {7,3 - \frac{{23}}{3}} \right)}^2} + 4.{{\left( {7,5 - \frac{{23}}{3}} \right)}^2} + 7.{{\left( {7,7 - \frac{{23}}{3}} \right)}^2} + 5.{{\left( {7,9 - \frac{{23}}{3}} \right)}^2}} \right] \approx 0,04.\]
Trả lời: 0,04.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có bảng sau
![Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau: Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\). B. \(s = 14,48\). C. \(s = 8,2\). D. \(s = 3,85\) (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761395150.png)
Ta có chiều cao trung bình:
\[\overline x = \frac{1}{{500}}\left( {152.25 + 156.50 + 160.200 + 164.175 + 168.50} \right) = 161,4\].
Phương sai của mẫu số liệu:
\[{s^2} = \frac{1}{{500}}\left[ \begin{array}{l}25{\left( {152 - 161,4} \right)^2} + 50{\left( {156 - 161,4} \right)^2} + 200{\left( {160 - 161,4} \right)^2}\\ + 175{\left( {164 - 161,4} \right)^2} + 50{\left( {168 - 161,4} \right)^2}\end{array} \right] = 14,84\]
\( \Rightarrow \) Độ lệch chuẩn: \[s = \sqrt {{s^2}} = \sqrt {14,48} \approx 3,85\]. Chọn D.
Lời giải
Ta có \(y' = 6{x^2} - 6x - 6m\).
Hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi \(y' \le 0\) với \(\forall x \in \left( { - 1;\,1} \right)\) hay \(m \ge {x^2} - x\) với \(\forall x \in \left( { - 1;\,1} \right)\).
Xét \(f\left( x \right) = {x^2} - x\) trên khoảng \(\left( { - 1;\,1} \right)\) ta có \(f'\left( x \right) = 2x - 1\); \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}\).
Bảng biến thiên

Dựa vào bảng biến thiên ta có \(m \ge f\left( x \right)\)với \[\forall x \in \left( { - 1;\,1} \right)\]\( \Leftrightarrow m \ge 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau: Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\). B. \(s = 14,48\). C. \(s = 8,2\). D. \(s = 3,85\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761395174.png)