Câu hỏi:

26/10/2025 204 Lưu

Cho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong như hình vẽ sau

Cho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong như hình vẽ sau (ảnh 1)

a) Hàm số \(y = f(x)\)đồng biến trên khoảng \(( - \infty ;3).\)

b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số\(y = f\left( x \right)\) là 2.

c) Hàm số \(y = f(x)\)có hai cực trị trái dấu.

d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số \(y = f(x)\) \[d:y = - 3x\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Dựa vào đồ thị hàm số ta có

a)  Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\)\((1; + \infty ).\)

b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.

Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.

c)  Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)

d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]

\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].

Đáp án: a) Sai;   b) Đúng; c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[1\].                            

B. \[2\].                             
C. \[3\].                                 
D. \[4\].

Lời giải

Từ bảng xét dấu ta suy ra hàm số đã cho có \(4\) điểm cực trị. Chọn D.

Lời giải

\(h'\left( t \right) = - \frac{\pi }{6}\cos \left( {\frac{\pi }{6} - \frac{\pi }{{12}}t} \right)\);

\(h'\left( t \right) = 0 \Leftrightarrow - \frac{\pi }{6}\cos \left( {\frac{\pi }{6} - \frac{\pi }{{12}}t} \right) = 0\)\( \Leftrightarrow \frac{\pi }{6} - \frac{\pi }{{12}}t = \frac{\pi }{2} + k\pi \)\( \Leftrightarrow t = - 4 - 12k\).

\(0 \le t \le 24\) nên \( \Leftrightarrow 0 \le - 4 - 12k \le 24\)\( \Leftrightarrow - \frac{7}{3} \le k \le - \frac{1}{3}\)\(k \in \mathbb{Z}\) nên \(k = - 2;k = - 1\).

Suy ra \(t = 20;t = 8\).

Bảng biến thiên

Hằng ngày mực nước của một con kênh lên xuống t (ảnh 1)

Dựa vào bảng biến thiến ta thấy \(\left( {8;20} \right)\) là khoảng thời gian trong ngày mà độ sâu của mực nước trong kênh tăng dần. Suy ra \(a = 8;b = 20.\) Do đó \(T = 2a + b = 36\).

Trả lời: 36.

Câu 4

A. 1.                                 
B. 2.                                
C. 3.  
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 5.                                
B. 4.                                
C. 0.  
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP